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ABSTRACT

Color images taken in low light scenes are deteriorated with

noise and motion blur. The simultaneous reduction of noise

and motion blur from the low-light color images is difficult

because the imposed noise hinders accurate motion blur ker-

nel estimation. To overcome this problem, we build a novel

imaging system using a single sensor that captures red, green,

blue (RGB) and near-infrared (NIR) images. Our imaging

system captures low-light scenes with exposure bracketing,

which is a technique to acquire multiple images with differ-

ent exposure times. It thus allows us to obtain the short- and

long-exposure RGB/NIR images. Both the short- and long-

exposure NIR images taken using an NIR flash unit can be

captured with less noise; thus they enable estimation of mo-

tion blur kernel accurately. Based on this fact, we perform

joint denoising and deblurring of the low-light color image

with the estimated motion blur kernel. Our experiments using

real raw data captured by our imaging system demonstrate the

effectiveness of our method.

Index Terms— low-light image restoration, RGB/NIR

single sensor, exposure bracketing, denoising, deblurring

1. INTRODUCTION

The restoration of low-light color images deteriorated with

unwanted noise and motion blur is a major subject in the

research field of image processing. To reduce such visual

artifacts from the captured color images, many methods

have been proposed (e.g. denoising [1, 2], deblurring [3–6]

etc.). Furthermore, simultaneously capturing color and near-

infrared (NIR) images has shown to be effective in restoring

low-light color images [7–19]. Because NIR images can be

captured with less noise by using an NIR flash unit, they play

an important role in effectively eliminating the visual artifacts

while preserving the edge details of the scene.

The simultaneous reduction of noise and motion blur from

the low-light color images remains difficult. As reported in

[20–22], the imposed noises hinder estimating motion blur

kernel utilized for removing motion blur from the images.

In this study, we propose a novel imaging system using a

single sensor that captures red, green, blue (RGB) and NIR
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Fig. 1: Proposed imaging system. (a) Color filter array of our

RGB/NIR single sensor. (b) Exposure bracketing using our

sensor. It enables the acquisition of successive RGB/NIR im-

ages taken with the short- and long-exposure times.

images. Our system captures low-light scenes based on ex-

posure bracketing, which is a technique used to acquire mul-

tiple images with different exposure times. Figure 1 shows

our imaging system. Our system captures the short- and the

long-exposure RGB/NIR images of the low-light scene.

Long-exposure imaging is useful in recovering low-light

color images as reported in [17]. We also utilize the RGB

images captured with the long-exposure time to reconstruct

the latent clear color images. However, the long-exposure

RGB images are inadequate for estimating motion blur ker-

nel because they include noise. In contrast, the captured NIR

images have less noise, thus suggesting that the use of NIR

images would enable us to estimate motion blur kernel accu-

rately. We estimate optimal motion blur kernel in the long-

exposure NIR images with the help of the motion-blur less

NIR images taken with a short-exposure time. As our single

sensor enables us to capture RGB and NIR images simulta-

neously, we can assume that the motion blur kernel estimated

using NIR images would be similar to that in the RGB one.

Thus, it allows us to perform joint denoising and deblurring

of the long-exposure RGB image with reliable motion blur

kernel obtained using NIR images.

The main contribution of our work is as follows: 1) We

developed a novel imaging system using an RGB/NIR single

sensor with exposure bracketing to remove noise and motion

blur simultaneously. 2) We proposed an algorithm for jointly

denoising and deblurring of low-light color images by using
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Fig. 2: Overview of our low-light color image restoration. (I) Guidance and color image construction. We interpolate the short- and long-

exposure guidance images gS and gL by using the previous method [13]. We interpolate long-exposure color image xL by using a

bicubic method, after performing RGB information extraction from yL [13]. (II) Motion blur kernel estimation. We estimate motion

blur kernel k∗ using gS and gL while exploring the latent deblurred guidance image g∗. (III) Color image restoration. We perform

joint denoising and deblurring of xL using k∗ and g∗.

the short- and long-exposure RGB/NIR images captured us-

ing our imaging system. Our algorithm allows us to perform

non-blind deblurring of the low-light color image by exploit-

ing the estimated motion blur kernel obtained using the NIR

images taken with less noise.

2. OVERVIEW OF PROPOSED METHOD

The goal of this study is to achieve reconstructing noise- and

blur-free color images by using the short- and long-exposure

RGB/NIR images captured by our imaging system.

Figure 2 provides an overview of our reconstruction

scheme. Let the captured raw data taken with the short- and

long-exposure times are yS and yL, respectively. Using yS

and yL, we construct the short- and long-exposure guidance

images, gS and gL, which include NIR information (i.e., less

noise) and long-exposure color image xL. In particular, we

interpolate gS and gL by using previous method [13]. In fact,

RGB and NIR information obtained using RGB/NIR single

sensor can be separated as reported in [13, 23–25]. We sepa-

rate the RGB and NIR information by using the method [13].

We then interpolate long-exposure color image xL by using

a bicubic interpolation method. Using noiseless guidance

images (gS and gL), we estimate motion blur kernel. We

describe the details of this scheme in Sec. 3. With the esti-

mated motion blur kernel, we jointly perform denoising and

deblurring (i.e., non-blind deconvolution) of the color image

xL. The details of this processing are described in Sec. 4.

3. MOTION BLUR KERNEL ESTIMATION USING
SHORT/LONG GUIDANCE IMAGES

The guidance images gS and gL are useful to estimate the

motion blur kernel because being with less noise. To estimate

optimal motion blur kernel of gL, we exploit short-exposure
guidance image gS. The use of an image pair captured with

the short- and long-exposure times is effective to estimate mo-

tion blur kernel in a long-exposure image [26, 27].

3.1. Observation model

Our scheme jointly estimates the motion blur kernel k as well

as the latent clear guidance image. Because our imaging sys-

tem captures gS and gL at the different times, spatial mis-

alignment between them would be observed. In our method,

such misalignment would not decrease the accuracy in esti-

mating motion blur kernel because our system based on the

exposure bracketing can take the short- and long-exposure im-

ages quickly. According to the previous method using multi-

shot images [28], such misalignment appears as a shift of the

center position of the estimated motion blur kernel. Based on

this fact, we model the observation process of gS and gL as

gS = g + nS,

gL = g ⊗ k + nL,
(1)

where g, nS, and nL denote the latent deblurred guidance

image, and the imposed noise in the short- and long-exposure

guidance image, respectively. In addition, ⊗ represents the

convolution operator. In the model in Eq. (1), k represents

motion blur kernel including the shift caused by the misalign-

ment between gS and gL. Based on this observation models,

we perform an alternating iterative minimization procedure to

estimate k and g.

3.2. Estimating g

We estimate the latent deblurred guidance image g with the

given motion blur kernel k estimated at the previous iteration.

We solve the following optimization problem with the control

parameters λ1, λ2 and λ3 as,

min
g

λ1
∣
∣
∣
∣g ⊗ k − gL

∣
∣
∣
∣2
2
+ λ2

∣
∣
∣
∣g − gS

∣
∣
∣
∣2
2

+ λ3
∣
∣
∣
∣g −GIF (

g, gS
)∣∣
∣
∣2
2
+ ||�g||p ,

(2)

whereGIF (i, j) denotes the operation of guided image filter-

ing [29] with input image i and guidance image j. Moreover,
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||·||p denotes �p norm (0 < p < 1), and� is the gradient op-

erator. In Eq. (2), the first and the second terms are constraints

based on the observation models in Eq. (1), respectively. The

third term is a constraint characterizing the fact that g is likely

to have the similar structure of the short-exposure guidance

image gS being with less motion blur. The forth term repre-

sents a regularization characterizing the fact that the gradients

of natural images are drawn from a hyper-Laplacian distribu-

tion (i.e., �p norm representation) as reported in [5].

To solve Eq. (2), we solve the following two sub-

problems alternately iteratively:

g̃ = GIF
(
g, gS

)
, (3)

min
g

λ1
∣
∣
∣
∣g ⊗ k − gL

∣
∣
∣
∣2
2
+ λ2

∣
∣
∣
∣g − gS

∣
∣
∣
∣2
2

+ λ3 ||g − g̃||22 + ||�g||p .
(4)

We solve Eq. (3) in the spatial domain using the algorithm

proposed in [29], and solve Eq. (4) in the frequency domain

using the algorithm proposed in [5]. We iteratively perform

the above procedures until the change in g converges.

3.3. Estimating k

The salient edges in g are effective in estimating k more ac-

curately, as reported in [4, 16]. Using this fact, we derive k
using the estimated g by minimizing the following problem,

min
k

λ4
∣
∣
∣
∣�ĝ ⊗ k −�gL∣∣∣∣2

2
+ ||k||p , (5)

where ĝ is salient edges in g computed by using the method

proposed in [4]. The second term characterizes a smoothness

constraint for the motion blur kernel k to be estimated. We

solve Eq. (5) using iterative re-weighted least squares (IRLS)

and conjugate gradient (CG) methods as in [6].

We estimate motion blur kernel in a coarse-to-fine manner

by using a multi-scale iterative process as was done in [3, 4,

6, 16]. Finally, we acquire optimal motion blur kernel k∗ and

optimal guidance image g∗.

4. NON-BLIND DEBLURRING OF
LOW-LIGHT COLOR IMAGE

We perform non-blind deblurring of the low-light color image

xL with the estimated motion blur kernel k∗ and the obtained
guidance image g∗. Because the short-exposure color image

would be heavily deteriorated by noise, we estimate x by us-

ing xL. We solve the following optimization problem,

min
x

ω1

∣
∣
∣
∣x⊗ k∗ − xL

∣
∣
∣
∣2
2

+ ω2 ||x−GIF (x, g∗)||22 + ||�x||p ,
(6)

where ω1 and ω2 are control parameters. In Eq. (6), the sec-

ond term based on a guided image filtering contributes to re-

ducing the noise of the color image to be recovered. We solve

Eq. (6) using the similar manner as that for solving Eq. (2).

5. EXPERIMENTS

We present experimental results to demonstrate the effective-

ness of our method using raw data captured by our imag-

ing system. In this experiment, we set the short- and long-

exposure time to 5.01 ms, 33.0 ms, respectively. We tested

our system using 20 real raw data. We considered two ex-

amples of our restoration results in this paper. We conducted

preliminary experiments for finding optimal parameters us-

ing raw data different from those used in testing. After that,

we set control parameters for our image restoration to p =
0.8, λ1 = 200, λ2 = 100, λ3 = 200, λ4 = 1, ω1 = 200, ω2 =
700. We used the same parameters for all the experiments.

In fact, it is hard to directly compare other state-of-the-

art methods because our imaging system differs from that of

previous methods. However, the performance of color image

restoration processing itself can be able to be evaluated if we

assumed that the input color and guidance images are given.

In this condition, we compared state-of-the-art methods that

perform joint denoising and deblurring of color image taken

in low-light scenes. We set parameters of each method to be

such that it could output the best qualitative results.

We first compared state-of-the-art method [22] that per-

forms joint denoising and deblurring of single color image.

We used xL as the input image for this method. Figure 3

shows the reconstruction results for a low-light scene. The in-

put color image xL is shown in Fig. 3(a). We can see that xL

includes both noise and motion blur. The captured short- and

long-exposure guidance images gS and gL are shown in Figs.

3(b) and (c), respectively. Figure 3(d) shows the deblurred

guidance image g∗ and the estimated motion blur kernel k∗

(shown in the white rectangle at the upper left in Fig. 3(d)) ob-

tained by using our method. We can qualitatively see that our

method could perform deblurring of the long-exposure guid-

ance image. Figures 3(e) and 3(f) show the reconstruction re-

sults obtained using the method [22] and our method, respec-

tively. We can see that our method showed better performance

in restoring the low-light color image than the method [22].

We conducted further comparison experiments. We com-

pared our method with other state-of-the-art methods for color

image restoration with the help of the guidance image. We

used two methods [10, 16] that perform joint denoising and

deblurring of color image by exploiting a guidance image.

We used xL and g∗ as the input images for these methods

[10,16]. We note that Seo’s method [10] performed color im-

age restoration without estimating the motion blur kernel.

Figure 4(a) shows the short-exposure color image taken

by our imaging system (Note that not all methods use this,

just for reference.). We can see that this short-exposure color

image was heavily deteriorated by noise. Further, Figs. 4(b)-

(d) show the input images used in our method. Fig. 4(e) show

the deblurred guidance image and the estimated motion blur

kernel obtained using our method. Figs. 4(f)-(h) show re-

construction results obtained using the methods [10, 16], and
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(a) Captured xL (b) Captured gS

(c) Captured gL (d) Reconstructed g∗

(e) Result of [22] (f) Our result

Fig. 3: Comparison results in low-light color image restoration with

the method [22]. The estimated motion blur kernels obtained

using our method and the method [22] are shown in the upper

left (white rectangular images) in (d) and (e), respectively.

The motion blur kernel is of size 61× 61.

our method, respectively. As shown in Fig. 4(f), the motion

blur kernel estimation using color image was difficult even

for state-of-the-art method [16] owing to heavy noise. In con-

trast to the method [16], our motion blur kernel estimation us-

ing the guidance images (gS and gL) can be performed with

less effect of noise (Fig. 4(e)). Moreover, we can also see

that our method showed better restoration result than those

obtained using the methods [10, 16]. This comparison eval-

uation clearly showed that our method is effective for color

image restoration.

6. CONCLUSION

We proposed a novel imaging system using an RGB/NIR

single sensor with exposure bracketing to simultaneously re-

move motion blur and noise of low-light color images. We

proposed an algorithm for jointly denoising and deblurring of

low-light color images by using the short- and long-exposure

RGB/NIR images captured using our imaging system. Our

algorithm allows us to perform non-blind deblurring of the

low-light color image by exploiting the estimated motion

blur kernel obtained using the short- and long-exposure NIR

images taken with less noise. Through the experiments using

real raw data captured by our imaging system, we demon-

strated that our method reconstructed clear color images

(a) Short-exposure color image (b) Captured xL

(c) Captured gS (d) Captured gL

(e) Reconstructed g∗ (f) Result of [16]

(g) Result of [10] (h) Our result

Fig. 4: Comparison results in low-light color image restoration with

the methods [10,16]. These comparison methods utilized g∗

as the guidance image for deblurring of xL. The estimated

motion blur kernels using our method and the method [16]

are shown in upper left in (e) and (f), respectively. The mo-

tion blur kernel is of size 55× 55.

better than those obtained using state-of-the art methods.
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