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ABSTRACT

X-ray crystallography is an experimental technique to es-
timate the 3D atomic positions of the elements present in
a crystal. This technique constructs the 3D structure from
the phase of diffracted and patterned X-rays (DPX). Multi-
ple intensity DPX measurements are acquired to solve the
phase retrieval problem. The feasibility of implementing this
technique depends on solving the phase retrieval problem
using expensive multiple valued patterns and the Truncated
Wirtinger Flow Algorithm. This paper presents a Stochastic
Truncated Wirtinger Flow Algorithm (STWF) which solves
the phase retrieval problem based on DPX measurements
low-cost boolean block-unblock coded apertures. Several
simulations are realized to demonstrate the convergence
of the STWF algorithm and the optimal parameters of the
boolean coded apertures. The results indicate that given
the DPX measurements, the quality of reconstructed phase
images using STWF attained up 24.63dB of PSNR.

Index Terms— X-ray crystallography, coded aperture,
phase retrieval, diffraction pattern.

1. INTRODUCTION
X-ray crystallography allows determining the atomic position
of a crystal in a three-dimensional (3D) space using the phase
of optically sensed diffraction patterns [1]. The 3D model is
valuable in applications such as the design of medicines [2]
and the development of new materials [3]. However, optical
sensors cannot directly measure the phase of the diffraction
patterns. Therefore, it must be recovered from the acquired
diffraction patterns of the crystal under study. Furthermore,
the use of a coding element in the X-ray sensing system was
proposed in [4], in order to reduce the exposition to x-ray of
the crystal encoding and modulating the diffraction patterns.
Particularly, recently proposed coding designs [5, 6, 7] mod-
ulate the X-ray diffraction patterns changing their phase or
blocking some diffracted beams before being measured in the
sensor. The percentage of unblocked coded X-ray diffraction
beams is known as the transmittance of the coding element.
Several methods as described in [5, 6, 8] allow to recover
the phase from the coded X-ray diffraction patterns. Some

of them include the non-convex formulations of the phase re-
trieval problem via Truncated Wirtinger Flow (TWF) [6, 8].
In addition, these works have proposed coding elements that
help in obtaining the reconstruction of the phase. Despite the
fact that the state-of-the-art octanary codification pattern de-
signs in [4] allow to recover the phase from diffracted beams,
their physical implementation in a real architecture is highly
expensive, because it requires finding a material to change the
phase of a diffracted beam.

In contrast, this work presents a Stochastic Truncated
Wirtinger Flow Algorithm (STWF) which solves the phase
retrieval problem based on DPX measurements acquired
with low-cost boolean block and unblock coded apertures.
Boolean coded apertures refer to those designs in which
each element blocks or lets pass through the X-ray diffracted
beams. The performance of the STWF algorithm is analyzed
in this paper when different boolean code designs are used.
Simulations show that the quality of the reconstructions us-
ing boolean coded apertures attained up 24.63dB of PSNR
and their construction in a real diffraction pattern system is
feasible in comparison with the octanary pattern designs. In
addition, the results show that the optimal transmittance for
the coded aperture designs is around 50%.

2. PHASE RETRIEVAL FROM ENCODED
DIFFRACTION PATTERNS

The measurements in the phase retrieval problem are given by

yk = |〈ak,x〉|2, k = 1, . . . , n, (1)
where ak ∈ Cn are the row vectors in the Fourier Trans-
form matrix F = [a1, . . . ,an]

∗ ∈ Cn×n, x ∈ Cn is un-
known [6] and ∗ is the Hermitian transpose operation. Let
y = [y1, . . . , yn]

∗ ∈ Rn be the measurements vector, such
that Equation (1) can be rewritten as

y = |Fx|2 (2)
where |·| is the pointwise magnitude. Moreover, consider-
ing noise in the observed measurements, they can be mod-
eled as yk ∼ Poisson(|〈ak,x〉|2), k = 1, · · · , n. Note that
|〈ak,x〉|2 = (a∗kx)(a

∗
kx)
∗ = a∗k(xx

∗)ak, where X = xx∗

is a rank-one matrix. Considering a stochastic noise model
with independent samples and seeking the maximum likeli-
hood estimate (MLE), the recovery problem is given by
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argmin
x∈Cn

n∑
k=1

µ2
k − yklog(µk) + λTr(X)

subject to µk = a∗kXak, k = 1, . . . , n,

X � 0.

(3)

The optimization problem in Eq. (3) can be solved with
the TWF algorithm which is a gradient descent method [6].
The TWF algorithm was used in [6] to recover the phase
when the architecture includes an optical element known as
octanary coding element. This element modulates the X-ray
diffraction pattern before being measured in the sensor. More
specifically, the measurements of the detector in Eq. (2) con-
sidering the effect of the coding element are given by

y = |FDx|2 (4)
where D ∈ {1,−1, j,−j}n×n is a diagonal matrix that rep-
resents the octanary patterns. Note that the coded diffraction
measurements in Eq. (4) can be considered as a single pro-
jection. Thus, let L be the number of projections and D` be
a different coding pattern corresponding to each projection,
then multiple projections, each with different pattern can be
written as

y` = |FD`x|2. (5)
Despite the fact that octanary coding patterns have been

designed to recover the phase from diffracted beams, its phys-
ical implementation in a real architecture is impractical be-
cause it requires changing the phase of a diffracted beam and
finding a material allowing this characteristic is highly expen-
sive.
Algorithm 1 Stochastic Truncated Wirtinger Flow Algorithm

1: function STWF–ALGORITHM (α0, α1, α2, α3,y, T )
2: {ak ∈ Cn|1 ≤ k ≤ n} (Sampling vectors)

3: λ0 ←
√

1
n

n∑
k=1

yk

4: H← 1
n

n∑
k=1

ykF
(
aka
∗
k

)
1{|yk|≤α2

3λ
2
0}

5: x(0) ←
√

n2

n∑
k=1
‖ak‖2

λ0x̃ (x̃ is the leading eigenvector of H)

6: for t = 1 to T do

7: x(t+1) ← x(t) + 2µt
n

n∑
k=1

(
yk− | a∗kx

(t) |2
)

x(t)Hak︸ ︷︷ ︸
vk

ak1ε
k
1 ∩ εk2

8: where:
9: εk1 ← {α0 ≤

√
n|a∗

kx
(t)|

‖ak‖‖x(t)‖
≤ α1}

10: εk2 ← {| yk− | a∗kx
(t) |2|≤ α2Kt

√
n|a∗

kx
(t)|

‖ak‖‖x(t)‖
}

11: Kt ← 1
n

n∑
k=1

| yk− | a∗kx
(t) |2|

12: end for
13: l←

∑n
k=1

(
yklog(|〈ak,x(T )〉|2)− |〈ak,x(T )〉|2

)
14: return x(T ), l
15: end function

In contrast, the block-unblock coded apertures presented
in this work, known as boolean coded apertures, can be eas-
ily implemented in X-ray diffraction applications [9] and [10].

Moreover, the blocking elements of these coded apertures can
be fabricated using tungsten powder, because this material
can stop an x-ray diffracted beam, resulting in low fabrica-
tion cost [10, 11].

The TWF algorithm cannot be directly applied to recover
the phase from boolean coded aperture measurements. There-
fore, this work presents a Stochastic Truncated Wirtinger
Flow Algorithm (STWF), described in Algorithm 1, which
uses a feasible modulation of the diffraction patterns based
on boolean coded apertures. The first modification con-
sists on simulating a coding pattern with {−1, 1} elements
using boolean coded apertures which is explained in Sec-
tion 4. The second modification is to change the initial-
ization of x(0) in Algorithm 1 line 5, which is the leading

eigenvector of the matrix H = 1
n

n∑
k=1

ykaka
∗
k1{|yk|≤α2

3λ
2
0}.

The TWF algorithm in [6] considers that the sampling vec-
tors ak in a general case, are normally distributed, i.e.
ak ∼ N (0, I) + iN (0, I), k = 1, . . . , n. However, in the
X-ray phase retrieval problem case, these vectors are the
rows of the Discrete Fourier Transform Matrix. Then, given
that gradient descent methods highly depend on the initial
guess and in order to get the initialization of x(0) in the
Fourier domain, the matrix H in Algorithm 1 line 4, was
initialized as

H =
1

n

n∑
k=1

ykF (aka
∗
k)1{|yk|≤α2

3λ
2
0}, (6)

where F(·) represents the Fourier Transform. In Algorithm
1 the inputs α0, α1, α2 and α3 in line 1, are the truncation
parameters. The terms εk1 , ε

k
2 defined in line 9 and 10, respec-

tively, are two collections of events i.e. the value of εk1 and
εk2 is 1 when their respective constraint is satisfied and 0 oth-
erwise. Moreover, the notation of truncation εk1 ∩ εk2 simply
to discard the values vk in line 7 when εk1 ∩ εk2 = ∅. Then,
the action of |yk| ≤ α2

3λ
2
0 in the initialization of H in line 4,

is to discard those measurements that are several times larger
than the average [6]. The returned variable l in line 14 is the
log-likelihood of the solution x(T ). Finally, since the STWF
algorithm is a truncated gradient descent method, the trun-
cation parameters limit the adequate search area to find the
solution. Thus, the optimal values of the truncation parame-
ters α0, α1, α2 and α3 are calculated using a Markov Chains
Monte Carlo method (MCMC) presented in Section 5.

3. BOOLEAN CODED APERTURE DESIGNS

The boolean coded aperture theoretically is designed as a di-
agonal matrix D = (dkk) ∈ {0, 1}n×n, where dkk = 1
represents a transmissive element and dkk = 0 represents a
blocking element. Moreover, the transmittance of the boolean
coded aperture is defined as tr =

∑n
k=1

∑n
j=1

dk,j

n2 .
Figure 1 shows an example of different boolean coded

aperture designs, where the white elements indicate one-value
entries that allow the beams to pass through and the black el-
ements are 0 in the coded aperture design. Figure 1(a) shows
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a blue noise pattern in which cluster of ones and zeros are
easily noticeable. To reduce these clusters occurrences, blue
noise patterns [12] are used as illustrated in Fig. 1(b). Other
types of boolean coded apertures include the Hadamard and
DFT matrices shown in Fig. 1(c) and Fig 1(d), respectively.

Fig. 1: Coded aperture designs with 32×32 pixels and 50% of
transmittance.(a) Random coded aperture. (b) Coded aperture
with blue noise pattern. (c) Hadamard coded aperture. (d)
Coded aperture based on DFT

4. CONVERGENCE OF THE STWF ALGORITHM
USING BOOLEAN CODING

First, the convergence of the STWF algorithm is presented for
coding elements {−1, 1}. After, it is illustrated that the mea-
surements based on {−1, 1} codification can be implemented
via boolean coded apertures. In order to analyze the modu-
lation elements {−1, 1} of the x-ray diffraction patterns with
the STWF algorithm, consider the following lemma.
Lemma 4.1. Let A ∼ N (0, 1) and consider a random vari-
able B independent of A such that

Pr(B = b) =

{
1
2 if b = 1 or b = −1
0 otherwise

then C = AB is a Gaussian random variable and C ∼
N (0, 1).

The TWF algorithm in [6] considers that the sampling
vectors in Equation (1) are normally distributed, i.e. ak ∼
N (0, I) + iN (0, I), k = 1, . . . , n. On the other hand, let E
be a diagonal matrix with {−1, 1} coding elements. Thus,
considering Lemma (4.1) the resulting vector Eak is nor-
mally distributed as ak. Moreover, since the convergence of
the TWF algorithm, is guaranteed in [6], using normally dis-
tributed sampling vectors, a coding pattern based on {−1, 1}
elements is a feasible modulation. To illustrate how the
measurements based on {−1, 1} coding elements can be im-
plemented by using boolean coded apertures, note that these
measurements can be written as

y`k = |〈E`ak,x〉|2, k = 1, . . . , n, ` = 1, . . . , L, (7)
where E` ∈ {−1, 1}n×n is a diagonal matrix. Note that
(E` + I)/2 = D` is a boolean coded aperture, where I is
the identity matrix. Notice that I = (I − D`) + D` and
2D` − I = E`, then defining the D` = I−D` ∈ {0, 1}n×n
matrix, the identity can be rewritten as I = D` + D` and
Equation (7) can be expressed as

y`k = |〈(D` −D`)ak,x〉|2

= x∗((D` −D`)aka
∗
k(D

` −D`))x

= x∗(D`aka
∗
kD

`)x+ x∗(D`aka
∗
kD

`)x

− x∗ (D`aka
∗
kD

` +D`aka
∗
kD

`)︸ ︷︷ ︸
V

x.

(8)

Using the fact that D` = I −D` and D` = I −D` the
term V in Equation (8) can be alternatively expressed as

V = (I−D`)aka
∗
kD

` + (I−D`)aka
∗
kD

`

= aka
∗
k − (D`aka

∗
kD

` +D`aka
∗
kD

`)
(9)

Using the above equivalence of matrix V, Equation (8)
can be expressed in equivalent form as

y`k = 2(|〈D`ak,x〉|2 + |〈D`ak,x〉|2)− |〈ak,x〉|2. (10)

From Equation (10), the encoded diffraction patterns
based on {−1, 1} modulation elements in matrix form, can
be written as

y` = |F(2D` − I)x|2 = 2(|FD`x|2 + |FD`x|2)− |Fx|2. (11)

Remark that the three terms in Equation (11) can be im-
plemented by using boolean coded apertures.

5. ESTIMATION METHOD FOR TRUNCATED
PARAMETERS

Algorithm 2 is an implementation of Metropolis Hasting
Algorithm to determine the truncation parameters of STWF
algorithm, using the sampling Markov Chains Monte Carlo
method (MCMC). Since that the optimal truncation parame-
ters values αj of STWF algorithm cannot be determine in an
analytical way, the MCMC algorithms is a numerical alterna-
tive for estimate them. For all experiments, prior distributions
were assumed over truncation parameters αj ∈ p (with zero
probability for negative values). In the MCMC scheme, for

Algorithm 2 Metropolis Hasting Algorithm

1: function MCMC–ALGORITHM (y,M, σ0, σ1, σ2, σ3, T )
2: α0 ← 0.1, α1 ← 2.5, α2 ← 3, α3 ← 1300
3: p← [α0, α1, α2, α3]
4: l(0) ← STWF–ALGORITHM(p,y, T )
5: L(0,:) ← p
6: for t = 0 to M do
7: a← (t mod 4)
8: p(a) ← logN (αa, σa)

9: l(t+1) ← STWF–ALGORITHM(p,y, T )
10: aux← e(l2−l1)q(L(t−1,:))/q(p)

11: l(t) ← l(t+1)

12: if min{aux, 1} < 1 then
13: L(t,:) ← L(t−1,:)

14: else
15: L(t,:) ← p
16: end if
17: end for
18: return L
19: end function

each parameter αj in p, an independent log-normal distribu-
tion was used such that q(pnew|pold) =

∏3
j=0 q(p

new
j |poldj ),

with q(pnewj |poldj ) = logN (ln(poldj ), σ2
j ), where the stan-

dard deviations σj , j = 0, · · · , 3 were establish as 10 times
the average of the prior distribution. Proposed parameter
samples are accepted with probability

pr = min

{
1,
P(pnew|µ0, · · · , µ3)q(p

old|pnew)
P(pold|µ0, · · · , µ3)q(pnew|pold)

}
. (12)

From the resulting Markov chain, we extracted the param-
eter configuration which maximized the posterior density.
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6. SIMULATIONS AND RESULTS
Simulations were conducted to show the performance of the
boolean coded aperture designs to recover the phase from
diffracted pattern measurements. The value of the transmit-
tance tr and the number of required projections L were var-
ied 0.1 ≤ tr ≤ 0.9 (0.1 ≤ tr ≤ 0.5 in case of Hadamard
and blue noise patterns) and 2 ≤ L ≤ 15 with a step size 0.1
and 1 respectively, in order to determine their optimal value.
The optimal transmittance is the minimum value of tr when
the quality of reconstruction does not increase with the num-
ber of projections. On the other hand, the required number
of projections is the minimum value of L when the quality of
reconstruction does not increase.

To simulate the acquisition process, a set of synthetic im-
ages in phase was built as follow. Let A = (akj) ∈ Rn×n
and B = (bkj) ∈ Rn×n be images. Based on the polar form
of a complex number, then an image V = (vkj) ∈ Cn×n is
given by vkj = akje

−iπbkj where akj and bkj are the mag-
nitude and the phase of the complex number vkj respectively.
Thus, the images A and B are the magnitude and the phase
of image V respectively.

The optimal truncation parameters were found with Al-
gorithm 2, which results in α0 = 0.045, α1 = 5, α2 = 6
and α3 = 3. Moreover, there were a significant reduction
of the variances of the prior distributions, that is, 35%, 25%,
28% and 40% for the truncation parameters αj , j = 0, · · · , 3
respectively.

All experiments were carried out on Matlab 2015a on an
Intel Core i7-4790 3.6 GHz x 8 with 32 GB RAM memory.
The presented results are the average of 100 realizations for
each case. Finally, the performance of the boolean coded
apertures was measured with the Peak-Signal-to-Noise-Ratio
(PSNR) metric.

6.1. Optimal design parameters for boolean coded aper-
tures

Figure 2 shows the obtained results for transmittance and
number of required projections using different boolean coded
apertures in recovering the phase. According to the obtained
performance, the minimum number of tr such that the quality
of reconstruction does not increase with the number of projec-
tions is 0.5, i.e. the optimal transmittance value for boolean
coded apertures in recovering the phase is 50%. Notice that
the minimum number of projections (MP), when the quality
of reconstruction does not increase, depends on the coded
aperture design. Using Hadamard coded apertures the MP is
L = 7 and in the case of random designs MP is L = 8, L = 6
and L = 4 using DFT and blue noise patterns, respectively.

6.2. Reconstructions
Figure 3 shows the reconstructed images in recovering the
phase using the different types of boolean coded apertures and
the STWF reconstruction algorithm. This experiment used
the optimal transmittance i.e. tr = 0.5 and the number of

Fig. 2: Analysis of transmittance and number of required pro-
jections. (a) Hadamard structures, (b) random coded aper-
tures, (c) DFT coded apertures and (d) blue noise patterns.

required projections L = 5. Notice that the highest perfor-
mance in recovering the phase is obtained with the blue noise
patterns. These results show that the blue noise patterns re-
quire less number of projections than the other designs. Then,
we conclude that the spatial distribution is an important de-
sign parameter in boolean coded apertures.

Fig. 3: Phase reconstructions using (a) Hadamard coded aper-
tures, (b) random coded apertures, (c) coded apertures with
DFT and (d) coded apertures with blue noise pattern.

7. CONCLUSIONS
The STWF algorithm for recovering the phase from inten-
sity of diffracted and patterned X-rays measurement using
boolean coded apertures was presented. The effect of differ-
ent types of boolean coded apertures has been studied. Sim-
ulations indicate that optimal transmittance for the boolean
coded apertures is 50%. Moreover, the quality of the recon-
structions using boolean coded apertures attained up 24.63dB
of PSNR. The blue noise patterns provide better reconstruc-
tion quality than other presented boolean designs. Ultimately,
choosing the correct truncation parameters of the STWF algo-
rithm and changing the initialization strategy allowed to solve
the phase retrieval problem using boolean coded apertures.
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