
FAST CONVOLUTIONAL SPARSE CODING WITH SEPARABLE FILTERS

Gustavo Silva, Jorge Quesada, Paul Rodrı́guez

Department of Electrical Engineering
Pontificia Universidad Católica del Perú

Lima, Peru

Brendt Wohlberg

T-5 Applied Mathematics and Plasma Physics
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

ABSTRACT

Convolutional sparse representations (CSR) of images are re-
ceiving increasing attention as an alternative to the usual indepen-
dent patch-wise application of standard sparse representations. For
CSR the dictionary is a filter bank of non-separable 2D filters, and
the representation itself can be viewed as the synthesis dual of the
analysis representation provided by a single level of a convolutional
neural network (CNN). The current state-of-the-art convolutional
sparse coding (CSC) algorithms achieve their computational effi-
ciency by applying the convolutions in the frequency domain.

It has been shown that any given 2D non-separable filter bank
can be approximated as a linear combination of a relatively small
number of separable filters. This approximation has been exploited
for computationally efficient CNN implementations, but has thus far
not been considered for convolutional sparse coding. In this paper
we propose a computationally efficient algorithm, that apply the con-
volution in the spatial domain, to solve the CSC problem when the
corresponding dictionary filters are separable. Our algorithm, based
on the ISTA framework, use a two-term penalty function to attain
competitive results when compared to the state-of-the-art methods
in terms of computational performance, sparsity and reconstruction
quality.

Index Terms— Convolutional Sparse Representation, Convolu-
tional Sparse Coding, Separable Filters

1. INTRODUCTION

Convolutional sparse representation (CSR) [1, 2] models an entire
signal or image as a sum over a set of convolutions of coefficient
maps, of the same size as the signal or image, with their corre-
sponding dictionary filters. Given a set of dictionary filters, which in
general are non-separable, the most widely used formulation of the
convolutional sparse coding (CSC) problem is Convolutional BPDN
(CBPDN) [3], defined as

argmin
{uk}

1

2

∥∥∥∥∥
K∑
k=1

Hk ∗ uk − b

∥∥∥∥∥
2

2

+ λ
K∑
k=1

p(uk) (1)

where {Hk} is a set of K non-separable L1 × L2 filters, {uk} is
the corresponding set coefficient maps (each with N = N1 × N2

samples), b is the N1 × N2 input image, and the penalty function
p(x) = ‖x‖1.

It has been shown [4, 5, 6] that any 2D filter bank (FB), com-
posed of a large number of non-separable filters {Hk}, can be ap-
proximated as a linear combination of a relatively small number of
separable filters {Gr}, i.e.

Hk ≈
R∑
r=1

αkrGr k ∈ {1, 2, . . . ,K}, (2)

where it is desirable that R � K. Assuming that (2) is an equality,
via simple algebraic manipulation we have

K∑
k=1

Hk ∗ uk =

R∑
r=1

Gr ∗

(
K∑
k=1

αkruk

)
. (3)

The spatial domain computation of the left- and right-hand sides
of (3) require O(2 ·K · (N1 ·N2) · (L1 · L2)) and O(4 ·R · (N1 ·
N2) · (L1 + L2) + 2 ·K ·R · (N1 ·N2)) operations respectively.

In this paper we present a FISTA/NIHT based algorithm to solve

argmin
{uk}

1

2

∥∥∥∥∥
R∑
r=1

Gr ∗

(
K∑
k=1

αkruk

)
− b

∥∥∥∥∥
2

2

+λ

K∑
k=1

p(uk) , (4)

where p(·) is a two-term penalty function1 given by

p(x) = α‖x‖1 + βφnng(x) , (5)

with α > 0, β > 0, and φnng(x) is the penalty function associated
with the Non-Negative Garrote (NNG) thresholding rule [8]. While
the specific choice of (5) has not been reported before, it is related
to [9, 10, 11, 12], where different penalty functions, which induce
sparsity more strongly than the `1-norm penalty function, have been
studied. We will further motivate (5) in Section 3.1.

The proposed algorithm is also used to solve

argmin
{vk}

1

2

∥∥∥∥∥
R∑
r=1

Gr ∗ vr − b

∥∥∥∥∥
2

2

+ λ

K∑
r=1

p(vr) , (6)

with p(·) defined as in (5), and where the {vr} can be interpreted
as “separable coefficient maps”, and the {uk} are the corresponding
non-separable coefficient maps, related by

vr =

K∑
k=1

αkruk . (7)

The advantage of problem (6) is that it is cheaper to solve than (4) in
terms of both computation time and memory requirements.

Our computational results, presented in Section 4, show that the
proposed algorithm, which applies the convolution operation in the
spatial domain, when solving either (4) or (6), are competitive with
the state-of-the-art algorithms [13, 3] for which the convolution op-
eration is computed in the Fourier domain. Furthermore, the com-

1It is shown in [7] that (4) is convex when the penalty function p(·) is
defined as in (5).

6035978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

putational performance of solving (6) can be up to five times faster
than the state-of-the-art algorithms, while obtaining competitive re-
construction quality and sparsity.

2. PREVIOUS RELATED WORK

We start this section with a brief review of the well-known ISTA
framework to then provide a list of computational algorithms that
target the solution of (1).

2.1. ISTA and Variants

For either (1) or (4) it is possible to find the matrix H such that

Hu =

K∑
k=1

Hk ∗ uk =

R∑
r=1

Gr ∗ vr , (8)

where vr is defined in (7) and u = [u1,u2, . . . ,uK], so (1) or (4)
can be written as

argmin
{u}

f(u) + λ · p(u) . (9)

For (9), ∇f(u) = HT (Hu − b). When HT is approximated
by the separable filters then

HTx = [z1, z2, . . . , zR] ·α, (10)

where zr = Gr ◦ x, α = [α1,α2, . . . ,uK]T , αr = [α1r, α2r,
. . . , αKr]

T , and ◦ represents correlation2. It is worth noting that
spatial computation of HTx, when using the separable filters {Gr},
has the same cost as Hx (see (3)).

When p(u) = ‖u‖1, the corresponding thresholding rule in
ISTA is soft thresholding i.e. shrink(x, λ) = sign(x)max{0, |x| −
λ}, while for p(u) = ‖u‖0 it is hard thresholding, i.e. hard(x, λ) =
I[|x|>λ] · x, where I

[cond]
is the indicator function. Both of these

choices have drawbacks such as discontinuity, estimation bias,
etc. [14, Section 3].

Recently, [9, 10, 11, 12] have explored the use of alternatives
to the usual `1-norm penalty function and thoroughly assessed the
convergence properties of the ISTA/FISTA algorithm for any thresh-
olding rule3. Interestingly, ISTA using a penalty function other than
the `1-norm can obtain better reconstruction quality for problems
that promote sparsity than hard/soft thresholding [9, 10, 11, 12].

2.1.1. ISTA

The Iterative Shrinkage/Thresholding algorithm (ISTA) is a well-
known first-order solver for (9) that achieves a sublinear rate of con-
vergence. For convenience the computational steps of ISTA are re-
produced in Algorithm 1.

Inputs: λ (parameter), u0 (initial guess)
Step n: (n ≥ 1) Compute

1 µn ∈ [0, 1
‖HTH‖];

2 un = thresh(un−1 + µnH
T (b−Hxn−1), tnλ)

Algorithm 1: ISTA applied to (9) when f(u) = 1
2
‖Hu− b‖22.

thresh(·), in line 2, is the corresponding thresholding rule5 for p(u).

2Equivalent to performing convolution with a kernel rotated 180 degrees.
3Given a thresholding rule, a corresponding penalty function p(·) can al-

ways be computed [14, 10, 11].

Note that usually µn = 1
τ

, where τ = 2 · σmax(H
TH) is the

smallest Lipschitz constant of ∇f(u), although it can also be up-
dated for each iteration [15, Section 3].

2.1.2. FISTA

The Fast Iterative Shrinkage Thresholding algorithm (FISTA) [15] is
closely related to ISTA, but has faster convergence. For convenience
the computational steps of FISTA are reproduced in Algorithm 2.
Note that L in this algorithm can be updated for each iteration by
following a backtracking step size rule [15, Section 4].

Inputs: λ (parameter), L (Lipschitz constant of∇f(u))
Step 0 : Set y1 = u0 (initial guess), β1 = 1
Step n: (n ≥ 1) Compute

1 un = thresh(un−1 + 1
L
HT (b−Hyn), λ

L
)

2 βn+1 = 1+
√
1+4βn
2

3 yn+1 = un + βn−1
βn+1

(un − un−1)

Algorithm 2: FISTA applied to (9) when f(u) = 1
2
‖Hu− b‖22.

thresh(·), in line 1, is the corresponding thresholding rule5 for p(u).

2.1.3. Normalized IHT

A simple modification to the Iterative Hard Thresholding (IHT) was
proposed in [16], along with an assessment of the performance and
stability of the resulting algorithm, called Normalized IHT (NIHT).
IHT / NHIT can also be used to solve (9) with p(u) = ‖u‖0 (i.e.,
the `0 “norm” counting the number of non-zero elements in u). The
NIHT is reproduced in Algorithm 3 for convenience.

Inputs: λ
Step 0 : u0 : initial guess
Step n: (n ≥ 1) Compute

1 νn = HT (b−Hun), µn = (νn)T νn

(νn)THTHνn

2 un = hard(un−1 + µnν
n, µnλ)

Algorithm 3: IHT applied to (9) when f(u) = 1
2
‖Hu− b‖22 and

p(u) = ‖u‖0.

2.2. Methods for CSC

Several algorithms have been proposed to directly solve the original
CSC problem (1). Earlier approaches were based on ISTA [17] or
FISTA [18], computing the necessary gradient in the spatial domain,
assuming a non-separable filter bank {Hk}. More recent approaches
are based on the ADMM framework, computing the convolutions in
the frequency domain [19, 13, 20, 3, 21].

3. PROPOSED METHOD

The proposed FISTA/NIHT-based algorithm is described in this sec-
tion. Full details of the novel aspects are provided in Section 3.1,
and the shortcomings of ADMM-based algorithms for separable fil-
ter banks are outlined in Section 3.2.

5If p(u) = ‖u‖1, then the corresponding thresholding rule is soft
thresholding, i.e. thresh(x, λ) = shrink(x, λ). For alternatives see
[9, 10, 11, 12].

6036

3.1. Hybrid FISTA/NIHT based

The proposed algorithm, listed in Algorithm 4, includes two partic-
ular characteristics: (i) it incorporates the optimal step size rule of
NIHT [16, eq. (18)] in the FISTA algorithm, and (ii) it uses the two-
term penalty function described in (5). When the CSC dictionary is
separable, the NIHT optimal step size rule (µn in line 2, Algorithm
4) can be efficiently computed: the numerator and denominator of
µn are given by inner products with the same size as the input im-
age, while the computation of these vectors is a by product of the
FISTA procedure, carried out via (8) and (10).

Inputs: λ
Step 0 : Set y(1) = z(0) (initial guess for (4) or (6)), β1 = 1
Step n: (n ≥ 1) Compute

1 cn : compute `1-cost for zn−1.

2 ξ(n) = HT (b−Hy(n)), ν = Hξ(n), µn = (ξ(n))T ξ(n)

νT ν

3 z(n) = thresh(z(n−1) + 1
µn

ξ(n), λ
µn
, α, β)

4 βn+1 = 1+
√

1+4βn
2

, y(n+1) = z(n)+ βn−1
βn+1

(z(n)−z(n−1))

Algorithm 4: Proposed FISTA/NIHT-based algorithm to solve (4)
or (6). Hx and HTx are computed via (3) and (10) respectively
for the former, whereas for the latter those same equations apply
considering αrr = 1 and zero otherwise. thresh(·), in line 3, is the
corresponding thresholding rule6.

When the `1-norm penalty function is considered for either (4)
or (6), we noticed7 that while the sparsity of the solution obtained
via Algorithm 4 was competitive, the reconstruction error under-
performed that obtained when solving (1) via any of the state-of-the-
art algorithms listed in Section 2.2. When the `0-norm or the penalty
function associated with the NNG thresholding rule were used7, the
reconstruction error greatly improved at the cost of the undesirable
effect of also increasing the sparsity measure by a factor of two or
more. Furthermore, when the MSE / Sparsity curve is plotted for the
above considered cases, as it is done for our final results depicted
in Figure 1.b or 1.c, the curve for the `1-norm penalty function re-
sembles an up-shifted version (i.e. competitive sparsity, relatively
poor MSE) of that of [3] (i.e. state-of-the-art, red line in Figure 1.b
or 1.c), whereas the curves for the `0-norm or the penalty function
associated with the NNG thresholding rule resemble a left-shifted
version (relatively poor sparsity, competitive MSE) of that obtained
by [3].

Considering the results presented in [9, 10, 11, 12], we also con-
ducted experiments by setting the penalty cost function p(·), for ei-
ther (4) or (6), to other non `1-norm alternatives. We observed (see
[7] for details) that the best performance trade-off, which balances
the reconstruction error, sparsity measure and time performance is
obtained when the penalty function described in (5) is used, whose
thresholding rule is given by

thresh(x, λ, α, β) =

{
γ(x, λ, α, β) if |x| > λ · (α+ β)
0 otherwise (11)

where γ(x, λ, α, β) =
x(x−sign(x) 2

λ·α)+λ
2·α2−λ2·β2

x+λ·α .
When applying the constraint α+ β = 1, thresholding rule (11)

is in fact a synthesis between soft-thresholding and NNG, parameter-

6If the penalty function described in (5) is used, then thresh(x, λ, α, β)
is defined in (11). For other thresholding rules, such as soft-thresholding,
hard-thresholding or NNG, the parameter α, β are irrelevant.

7These results are not included in Section 4 due to space limitations.

ized by the constants α, β. In order to balance the effects (observed
in our preliminary experimental results7) of using the `1-norm or the
penalty function associated with the NNG thresholding rule, we pro-
pose to vary, at each iteration of Algorithm 4, the values of α and β,
starting with α close to 1, and then slowly decreasing it. The compu-
tational results in Section 4 indicate that this simple strategy is very
effective.

The particular choice of (5) as the penalty function raises a ques-
tion about the convergence of Algorithm 4 to the global minimizer
of (4) or (6). A detailed analysis on this regard is given in [7], but we
note here that it is shown in [12] that (4) or (6) are convex as long
as the penalty function p(·) is ρ-weakly convex8; in [12] it is also
shown that for the aforementioned case, an ISTA based algorithm is
guaranteed to converge to the global minimizer. It is straightforward
to prove that the penalty function defined in (5) is indeed ρ-weakly
convex with ρ = 1

2
.

3.2. Shortcomings of an ADMM-based algorithm for (4)

The ADMM algorithm [22] is a well-known and versatile method
for solving optimization problems of the form minu,v f(u) + λ ·
p(v) s.t. Au + Bv − c = 0. Problem (4) can be expressed in
this form as

min
{uk,yk}

1

2
‖Hu− b‖22 + λ

K∑
k=1

p(yr) s.t. yk = uk , (12)

where u = [u1,u2, . . . ,uK] andHu =
∑R
r=1Gr∗

(∑K
k=1 αkruk

)
.

The ADMM steps for (12) are exactly those considered in [3, see
equations (10)–(12)]. Of these, the only computationally expensive
step is

min
u

1

2
‖Hu− b‖22 +

ρ

2

K∑
k=1

‖uk − y
(j)
k + z

(j)
k ‖

2
2 . (13)

Solving this sub-problem in the Fourier domain leads to the algo-
rithm proposed in [3]. Efficient solution in the spatial domain is
far more difficult, the most effective option being conjugate gradient
(CG). Since each CG solve requires multiple computations of Hx
and HTx, the computational performance is greatly inferior to that
of the Fourier domain approach.

4. RESULTS

All of the experiments reported here use the dictionary filter bank
{Hk} consisting of 144 filters of size 12 × 12 distributed with the
SPORCO library [23]. Images from the USC-SIPI database [24]
were used as test images for CSC problem (1), (4) and (6).

All CSC related experiments were carried on an Intel i7-
4710HQ (2.5 GHz, 6MB Cache, 32GB RAM) based laptop with
a nvidia GTX980M GPU card. The GPU-enabled Matlab SPORCO
library [23] was used to solve (1), since it is the state-of-the-art for
this problem. To solve either (4) or (6) we developed a GPU-enabled
Matlab library, which has been made publicly available [25].

We consider two separable filter banks with 24 and 30 separable
filters9 to approximate the original filter bank {Hk}. These separa-
ble filter banks were computed via [26] (other alternatives include
[27, 4, 5], but computational examples [26, 25] indicate that the re-
sults are indistinguishable). The parameters α, β, of the thresholding

8A function Θ : <N −→ < is said to be ρ-weakly convex if Θ(x) =
τ
2
‖x‖22 + p(x) is convex when τ > ρ > 0. See [12] for details.

9We provide additional results for R = {18, 24, 30, 36} in [25].

6037

rule in Algorithm 4 are linearly varied for the first M iterations via
α = k·(α0−αM)

M
+α0 and β = k·(β0−βM)

M
+β0 and then remain con-

stant. We found experimentally that taking M = 100, α0 = 0.95,
β0 = 0.05, αM ∈ [0.2, 0.35] and βM ∈ [0.65, 0.80] greatly im-
proves our computational results in terms of better sparsity and MSE
when compared to a fixed choice of α, β.

0 5 10 15 20 25

time (sec.)

25

30

35

40

45

50

P
S

N
R

FISTA, s30 (4)

FISTA, s30 (6)

FISTA, s24 (4)

FISTA, s24 (6)

SPORCO, ns144 (1)

SPORCO, s30 (6)

(a) PSNR vs time. λ =
0.01.

0.4 1 10 100

log(Sparsity)

10 -5

10 -4

10 -3

lo
g
(M

S
E

)

(b) MSE vs. sparsity.
λ = 0.01.

0.4 1 10 100

log(Sparsity)

10 -4

10 -3

lo
g
(M

S
E

)

(c) MSE vs. sparsity.
λ = 0.02.

Fig. 1. Computational results for CSC applied to the Lena test im-
age. The red and yellow curves are respectively for SPORCO [23]
solving problem (1) with a dictionary of 144 non-separable (“ns”) fil-
ters, and solving problem (6) with the corresponding separable (“s”)
approximation with 30 filters. The other curves are for Algorithm
4 applied to problems (4) and (6) with separable approximations of
24 and 30 filters, as indicated. When λ = 0.01 we provide (a) the
evolution of the PSNR versus time as well as (b) the relationship
between MSE and sparsity, while for λ = 0.02 we only show (c)
the relationship between MSE and sparsity. See also Table 1. These
results (PSNR evolution and MSE and sparsity relationship) are rep-
resentative for the majority of images in the USC-SIPI database [24].

A sparsity measure is defined as 100 · ‖x‖0
N

, where x represents
the coefficient maps and N is the number of pixels in the input im-
age. We have observed experimentally that a sparsity measure of
65% gives a good compromise that balances sparsity, reconstruc-
tion error (MSE or SNR) and number of total iterations needed to
reach the sparsity target for the CSC application. All implementa-
tions are run until the sparsity target is reached or until there is no
significant change in the sparsity measure, which along with other
statistics (PSNR, MSE, time, etc.) is collected every 10 iterations.

A comparison of the CSC performance of SPORCO solving
problem (1) with a dictionary of 144 non-separable filters and Al-
gorithm 4 solving problems (4) and (6) with dictionaries of 24 and
30 separable filters is presented in Fig. 1 and Table 1. Results for
problem (6) solved with SPORCO with the dictionary of 30 separa-
ble filters are included to provide a performance baseline. With re-
spect to Algorithm 4, solving problem (6) is both faster than solving
problem (4) and gives solutions that are sparser, albeit with a higher
reconstruction error. When compared to the state-of-the-art method,
Algorithm 4 applied to problem (6) attains a competitive sparsity
level while being 3∼5 times faster. Furthermore, when at least 30
separable filters are used to solve (6), the reconstruction error (SNR
or MSE) is superior to that of the state-of-the-art.

Method λ Iter. Time SNR MSE Sparsity
(sec.) (dB) ×10−5 (%)

SPORCO [23] 0.005 600 40.91 37.51 0.6 80.28
0.01 130 21.46 32.70 1.8 64.57

solves (1) 0.02 30 5.31 28.13 5.4 64.59

SPORCO [23] 0.005 100 3.21 33.02 1.76 68.18
0.01 30 1.13 29.79 3.7 60.51

R=30, solves (6) 0.02 20 0.77 26.64 10.0 47.76

Algorithm 4 0.005 800 41.61 36.88 0.7 105.58
0.01 400 20.76 33.98 1.4 101.72

R=24, solves (4) 0.02 300 15.63 30.76 2.9 67.43

Algorithm 4 0.005 800 15.93 34.13 1.3 63.10
0.01 220 4.34 31.6 2.4 64.14

R=24, solves (6) 0.02 90 1.81 28.49 4.9 62.49

Algorithm 4 0.005 800 44.21 39.20 0.4 104.48
0.01 400 22.09 35.87 0.9 102.99

R=30, solves (4) 0.02 300 16.62 31.88 2.2 68.97

Algorithm 4 0.005 800 19.79 36.51 0.7 67.85
0.01 250 6.07 33.3 1.6 64.77

R=30, solves (6) 0.02 90 2.22 29.31 4.1 64.43

Table 1. Computational results when solving the case described in
Fig. 1. for different values of λ.

5. CONCLUSIONS

We have proposed a computationally efficient algorithm to solve the
CSC problem when the dictionary filters are separable. We consider
two different formulations of this problem; one that explicitly com-
putes the coefficients of the separable approximation of the original
non-separable filter bank, and another that computes a reduced rep-
resentation corresponding to the separable approximation with fewer
filters. This algorithm, which applies the convolution in the spatial
domain, is based on the FISTA/NIHT algorithm, and uses a non-
convex penalty function, with a shrinkage rule that be interpreted
as a synthesis between soft-thresholding and the Non-Negative Gar-
rote. Our experiments indicate that this particular penalty function
is key to the effectiveness of our proposed method. Overall our
FISTA/NIHT-based method attains competitive performance when
compared to the state-of-the-art.

6. REFERENCES

[1] J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant
sparse coding,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010, pp. 3517–3524.

[2] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2010, pp. 2528–2535.

[3] B. Wohlberg, “Efficient algorithms for convolutional sparse
representations,” IEEE Transactions on Image Processing, vol.
25, no. 1, pp. 301–315, Jan. 2016.

[4] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning
separable filters,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2013, pp. 2754–2761.

[5] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua,
“Learning separable filters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 1, pp. 94–106,
Jan 2015.

6038

[6] Y. Nakatsukasa, T. Soma, and A. Uschmajew, “Finding a low-
rank basis in a matrix subspace,” CoRR, vol. abs/1503.08601,
2015.

[7] P. Rodriguez, “A two-term penalty function for inverse prob-
lems with sparsity constrains,” Submitted to European Signal
Processing Conference, Sept. 2017.

[8] L. Breiman, “Better subset regression using the nonnegative
garrote,” Technometrics, vol. 37, no. 4, pp. 373–384, Nov.
1995.

[9] S. Voronin and H. Woerdeman, “A new iterative firm-
thresholding algorithm for inverse problems with sparsity con-
straints,” Applied and Computational Harmonic Analysis, vol.
35, no. 1, pp. 151 – 164, 2013.

[10] M. Kowalski, “Thresholding rules and iterative shrink-
age/thresholding algorithm: A convergence study,” in IEEE
International Conference on Image Processing (ICIP), Oct.
2014, pp. 4151–4155.

[11] I. Selesnick and I. Bayram, “Sparse signal estimation by maxi-
mally sparse convex optimization,” IEEE Transactions on Sig-
nal Processing, vol. 62, no. 5, pp. 1078–1092, March 2014.

[12] I. Bayram, “On the convergence of the iterative shrink-
age/thresholding algorithm with a weakly convex penalty,”
IEEE Transactions on Signal Processing, vol. 64, no. 6, pp.
1597–1608, March 2016.

[13] B. Wohlberg, “Efficient convolutional sparse coding,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), May 2014, pp. 7173–7177.

[14] A. Antoniadis, “Wavelet methods in statistics: some recent
developments and their applications,” Statist. Surv., vol. 1, pp.
16–55, 2007.

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[16] T. Blumensath and M. Davies, “Normalized iterative hard
thresholding: Guaranteed stability and performance,” IEEE
Journal of Selected Topics in Signal Processing, vol. 4, no. 2,
pp. 298–309, April 2010.

[17] M. Zeiler, G. Taylor, and R. Fergus, “Adaptive deconvolu-
tional networks for mid and high level feature learning,” in
International Conference on Computer Vision (ICCV), 2011,
pp. 2018–2025.

[18] R. Chalasani, J. C. Principe, and N. Ramakrishnan, “A fast
proximal method for convolutional sparse coding,” in Inter-
national Joint Conference onNeural Networks (IJCNN), Aug.
2013, pp. 1–5.

[19] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional
sparse coding,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2013, pp. 391–398.

[20] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible
convolutional sparse coding,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015, pp.
5135–5143.

[21] B. Wohlberg, “Boundary handling for convolutional sparse
representations,” in IEEE International Conference on Image
Processing (ICIP), Phoenix, AZ, USA, Sept. 2016, pp. 1833–
1837.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, Jan. 2011.

[23] Brendt Wohlberg, “SParse Optimization Research COde
(SPORCO),” Software library available from http://
purl.org/brendt/software/sporco, 2016.

[24] “USC-SIPI image database,” Available from
http://sipi.usc.edu/database/.

[25] P. Rodriguez, “Convolutional sparse coding with sepa-
rable filters simulations,” Matlab library available from
http://sites.google.com/a/istec.net/
prodrig/Home/en/pubs/csrSep, 2016.

[26] P. Rodriguez, “Alternating optimization low-rank expansion
algorithm to estimate a linear combination of separable filters
to approximate 2d filter banks,” IEEE Asilomar Conference on
Signals, Systems and Computers, Nov. 2016.

[27] T. Kolda and B. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

6039

