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ABSTRACT
We have devised a greedy method for finding solutions to

the sparse Deconvolution Approach for the Mapping of Acoustic
Sources inverse problem using a variant of Orthogonal Matching
Pursuit. The algorithm has two stages, wherein the first stage
consists of selecting a subset of the basis vectors iteratively via a
regularized inverse of the point spread function, and the second
stage consists of constructing point source solutions using this basis
subset and its coefficients via hierarchical agglomerative clustering.
We have evaluated the algorithm on both synthetic and real data, and
show that the overall accuracy in terms of direction of arrival and
reconstructed source power is better than four other state of the art
methods.

Index Terms— Acoustic imaging, deconvolution, DAMAS, or-
thogonal matching pursuit, array processing.

1. INTRODUCTION

Acoustic imaging with microphone arrays has become the standard
method for determining the magnitude and location of acoustic
sources. The usual way of imaging with microphone arrays is
conventional beamforming, also known as delay-and-sum (DAS)
beamforming. However, as with any imaging device, the finite aper-
ture of the microphone array limits the resolution of the resulting
image (or source map). The result is a blurred image (or dirty source
map), thus making it hard to distinguish sources in close proximity
to each other. Beside the blurring of the main source image, the PSF
further contaminates the source map with repeated weaker images
of a source due to the sidelobes. These effects may be represented as
a clean source map being convolved with a variable kernel, which is
referred to as the point spread function (PSF). The PSF is essentially
the impulse response of the imaging system. The process of cleaning
up the source map by removing the array response is thus frequently
referred to as deconvolution.

In [1] the authors define the deconvolution problem as a ma-
trix inversion problem, and solve it iteratively with the Gauss-Seidel
method, a procedure that was named the Deconvolution Approach
for the Mapping of Acoustic Sources (DAMAS). The original for-
mulation of DAMAS converges slowly, however, and by assuming a
constant PSF over the imaging region, the DAMAS2/3 [2] methods
solve the DAMAS problem faster in the Fourier domain [3].

A popular alternative to DAMAS is the original CLEAN (by
appearance an acronym, but we have been unable to determine its
meaning) method [4], originally developed for application in as-
trophotography. CLEAN and its derivatives [5, 6] form a family of
algorithms for iteratively building up a “clean” source map (that is,
without the polluting effect of the array response) from the “dirty”
delay-and-sum image.

By assuming a small number of sources (sparse signal) rel-
ative to the number of points in the imaging grid the Sparsity
Constrained-DAMAS (SC-DAMAS) [7] method solves the inverse
problem using the Least Absolute Shrinkage and Selection Operator
(LASSO) method [8]. Sarradj [9] uses eigendecomposition of the
cross spectral matrix (CSM) into noise- and signal-subspaces to
estimate source levels and positions. Suzuki [10] decomposes the
CSM in a similar manner and uses a generalized inverse to find the
source distribution with minimal `1-norm that best fits the largest
eigenmodes of the CSM, a method that is referred to as Generalized
Inverse Beamforming (GIB). Zhong et al. [11] seek a solution to
the DAMAS inverse problem using basis pursuit denoising, which
optimizes the sparsity of the solution. Chu et al. [12, 13] minimize
an `2 cost function over both the source map and noise estimate
simultaneously with a sparsity constraint on the source map.

Many of the above methods employ constrained convex opti-
mization to solve the (sparse) DAMAS inverse problem. For suffi-
ciently sparse signals a more efficient, though sub-optimal, approach
is to use greedy algorithms [14]. Wang and Wu [15] apply a modi-
fied Orthogonal Matching Pursuit (OMP) [16] algorithm with a local
search step to the Direction of Arrival (DOA) problem. Padois and
Berry [17] use OMP to solve the standard DAMAS problem. In this
paper we will present a sparse reconstruction algorithm for the stan-
dard DAMAS inverse problem using a regularized inverse, similar
to Enhanced OMP (E-OMP) [18], with a subsequent clean-up step.
The proposed method retains the speed of a greedy method while
simultaneously giving greater accuracy in source positions and pow-
ers.

2. BACKGROUND THEORY

We model the sound field as a set of L monopole acoustic sources at
positions {~xl}1≤l≤L with complex source amplitudes as a function
of frequency ω at a reference distance r0 given by S(ω) ∈ CL×1.
The complex amplitudes at the microphone array can be written

X(ω) = G(ω)S(ω) ∈ CM×1. (1)

G ∈ CM×L is the propagation matrix whose elements can be ex-
pressed as Gm,l = r0

||~xm−~xl||
e−jω∆m,l , where ~xm/l is the position

of microphone m and source point l respectively, ∆m,l is the propa-
gation delay between the two, and c is the speed of sound.

The cross spectral matrix is given by R(ω) = X(ω)XH(ω). In
practice the CSM must be estimated from a finite number of sam-
ples which are usually split into K segments. The CSM is then
estimated by averaging over the K short-time estimates. The imag-
ing region is a set of points {~xn}1≤n≤N in a regular rectangular
grid. An acoustic image is a set of DAS power values for the imag-
ing grid points, or scan points. The DAS power value for a single
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grid point may be written as (dropping the explicit frequency de-
pendence from now on) Yn = 1

M2w
H
n Rwn, where wn ∈ CM×1

is the steering vector for grid point n whose elements are given by
(wn)m = ||~xn−~xm||

r0
e−jω∆m,n .

Substituting the expressions forR andX into the expression for
Yn yields

Yn =
1

M2

L∑
i=1

L∑
j=1

[
wH

n GiG
H
j wn ×

1

K

K∑
k=1

Si,kS
∗
j,k

]
, (2)

whereGi denotes column i ofG and Si,k is the complex source am-
plitude of source i in the time segment k. Equation (2) can be written
as a matrix equation by stacking the indices i and j, Y = ÃQ̃,where
Ã ∈ CN×L2

, and Q̃ ∈ CL2×1 is the vectorization of the source
covariance matrix. The model sources are commonly assumed to
be statistically independent, thus for sufficiently large K the cross
terms i 6= j in equation (2) approach zero and the expression for Y
reduces to

Y = AQ, (3)

where A ∈ RN×L
0+ is the PSF for the scan points and Q ∈ RL×1

0+ is
the source power vector. Eq. (3) is what we refer to as the DAMAS
inverse problem [1].

The column set of A forms an overcomplete basis (or frame) for
some subset of RN , with expansion coefficients for Y given by Q.
Each column of A thus represents a single basis vector correspond-
ing to a source grid point. If the positions of the actual sources do
not coincide with modelled source grid the basis is said to be mis-
matched. In practical applications basis mismatch, noise, and finite
sampling period usually mean that eq. (3) cannot be solved exactly,
but instead one focuses on minimizing the residual ρ = Y −AQ.

Orthogonal Matching Pursuit (OMP) [16] is a procedure for iter-
atively generating a k-sparse approximation that minimizes the norm
of the residual for a given measurement vector and basis by greedy
choice of the support set for the solution vector. In OMP a single
index is added to the support set in each iteration, thus the num-
ber of iterations should be equal to the sparsity of the source vector.
The selected index is the one corresponding to the basis vector with
the largest absolute inner product with the residual. All elements of
the solution vector selected so far is updated in every iteration by
an orthogonal projection of the measurement vector onto the space
spanned by the selected basis vectors. This ensures that an index is
never selected twice, and thus the number of iterations is bounded
by the size of the basis set.

3. PROPOSED ALGORITHM

We propose a two-stage algorithm for finding solutions to the
sparse DAMAS inverse problem, which we will refer to as Clustered
OMP-DAMAS, or COMP-DAMAS for short. The first stage is listed
in alg. 1, and is an iterative procedure similar to OMP ([ · ]Γ denotes
the submatrix/vector formed by the columns/elements indexed by
Γ). The purpose of this step is to select a sparse subset of the basis
vectors, given by the columns of A, to approximate the DAS im-
age. Instead of choosing the basis vector with the largest absolute
inner product with the measurement vector, we select the index of
the largest absolute value of q̃ ∈ RL given by

q̃ = arg min
q

∣∣∣∣∣∣ρ(i−1) −Aq
∣∣∣∣∣∣

2
≈ A†ρ(i−1), (4)

A† =
(
AHA+ λσmax(A)1L

)−1

AH , (5)

Algorithm 1 COMP-DAMAS 1st stage
1: Initialization:
2: Q(0) ← 0 {Preliminary solution/expansion coefficients}
3: Γ(0) ← ∅ {Support set}
4: ρ(0) ← Y {Residual}
5: for s = 1 to L do
6: k̃ = arg maxk

∣∣∣(A†ρ(s−1))k

∣∣∣
7: Γ(s) ← Γ(s−1) ∪ k̃
8: Q(s) ← (AH

Γ(s)AΓ(s))−1AH
Γ(s)Y

9: ρ(s) ← Y −AΓ(s)Q(s)

10: if
(∣∣∣∣∣∣ρ(s−1)

∣∣∣∣∣∣
2
−
∣∣∣∣∣∣ρ(s)

∣∣∣∣∣∣
2

)
/
∣∣∣∣∣∣ρ(s−1)

∣∣∣∣∣∣
2
≤ δ then

11: Exit loop
12: end if
13: end for

i.e. the largest absolute regularized least-squares coefficient of the
residual ρ. This is a regularized version of the selection rule used
in E-OMP [18], but unlike E-OMP we only select a single index
in each iteration, and instead of backtracking we employ a clean-
up step which is detailed later. A†, given by eq. (5), is a Moore-
Penrose inverse with an added regularization term with parameter λ.
σmax( · ) denotes the largest singular value of the argument and 1L

the identity matrix of size L× L. The regularization is necessary in
all problems of practical interest (otherwise we would have a closed
form solution of eq. (3)). In another departure from OMP, we allow
the support set to grow beyond the number of sources, Ns (which
is assumed known), and terminate the loop when the relative change
in the norm of the residual is smaller than the parameter δ. Fur-
ther additions to the support set will have small coefficients and thus
not substantially improve the approximation Y ≈ AΓQΓ, i.e. the
remaining residual is assumed to be noise dominated. Regularized
inverse reconstruction is chosen because it tends to produce a large,
but relevant support set. Inner product reconstruction on the other
hand tends to introduce noise into the support set as soon as the set
size exceeds the number of sources.

The approximation of Y from stage 1, AΓQΓ, is a linear com-
bination of a subset of the columns of A, thus QΓ may in general
have negative coefficients. Since the elements of Q in eq. (3) rep-
resent source powers, the final source vector estimate must be non-
negative. Additionally, a real point source may have been repre-
sented by more than one basis vector. In the second stage of the
algorithm we thus seek to combine the basis vectors and coefficients
from stage 1 in such a way that negative coefficients are eliminated
(by being combined with basis vectors with positive coefficients) and
each real source is represented by a single basis vector. The first step
of stage 2 is to group the basis vectors by hierarchical bottom-up
(agglomerative) clustering using the degree of overlap of the nor-
malized beampatterns of two grid points as a measure of distance.
This choice of the distance measure is motivated by the heuristic ar-
gument that two basis vectors are more likely to represent a single
source if the degree of overlap is high. In particular, the distance
function used in the clustering is the inverted symmetric PSF, given
by

di,j = 1− 1

2

(∣∣wH(~xi)g(~xj)
∣∣2

|wH(~xj)g(~xj)|2
+

∣∣wH(~xj)g(~xi)
∣∣2

|wH(~xi)g(~xi)|2

)
, (6)

where ~xi/j denotes the positions of a pair of grid points. The dis-
tances between clusters are updated at each step by averaging the
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values of di,j for all members of a cluster. The clustering procedure
is halted when there are Ns clusters, or when the minimal distance
between any two clusters exceeds a parameter 0 < γ < 1. In prac-
tice a value of γ = 0.85 seems to provide a good balance between
including too many basis vectors and including too few.

After the clustering operation the chosen index set is partitioned
intoNc ≥ Ns disjoint sets Γ = Γ1∪Γ2∪ . . .∪ΓNc . As each cluster
of basis vectors, indexed by Γn, and their associated coefficients
QΓn , is hypothesized to represent a single source, we seek to find
an index kn ∈ {1, . . . , L} and a single coefficient Q̂kn > 0 that

minimizes
∣∣∣∣∣∣AknQ̂kn −AΓnQΓn

∣∣∣∣∣∣
2
. The solution is

kn = arg min
k

∣∣∣∣∣
∣∣∣∣∣Ak −

AΓnQΓn∑
i∈Γn

Qi

∣∣∣∣∣
∣∣∣∣∣ , (7)

Q̂kn = (AH
kn
Akn)−1AH

kn
AΓnQΓn . (8)

The values of kn and Q̂kn for each cluster define the Nc-sparse ap-
proximate solution to the DAMAS inverse problem, eq. (3).

4. EVALUATION ON SYNTHETIC DATA

To evaluate the accuracy of the proposed algorithm we have simu-
lated the acoustic field of three different source configurations with
varying levels of noise. Noise is modelled as additive Gaussian i.i.d.
at each receiver. The simulated sources emit uncorrelated white
noise and are located in a plane parallel to the array at a distance of
4.3 m. The imaging grid consists of 20×15 source points. Scenario
1 consists of three separated sources with power 1. Scenario 2 con-
sists of two sources with powers 0.7 and 1.0, separated by an angle
of 14.6◦. Scenario 3 consists of four separated sources with powers
0.25, 0.50, 0.75 and 1.0 in a square pattern. The first scenario is
a general test case, the second scenario is intended to test the abil-
ity to separate closely spaced sources, and the third scenario tests the
dynamic range. The three scenarios have been simulated with signal-
to-noise ratios of ∞, 0 dB, −6 dB, −9 dB, and −12 dB (relative
to a source at a distance of 4.3 m with power 1). The simulated mi-
crophone array has 16 × 16 elements in a regular rectangular grid
and an aperture of 39 cm× 39 cm.

We have applied COMP-DAMAS, as well as four other decon-
volution methods to the delay-and-sum (DAS) images to estimate
the actual source strengths and positions. The DAS image is formed
from K = 100 snapshots of 128 samples each at a frequency
f = 2 kHz. The reference methods used are OMP-DAMAS [17],
CLEAN-SC [6], SC-RDAMAS [12, 13] and GIB [10]. An example
of the deconvolved images resulting from application of the five
algorithms to the DAS image is shown in fig. 1.

To quantify the fidelity of the reconstructed acoustic images we
use the average position error, measured in meters, and the average
relative source power error. The average position error is defined as
the distance between the actual source position and the center of the
pixel with the largest power in its vicinity in the reconstructed image,
averaged over all sources. The minimal attainable position error is
thus limited by the resolution of the imaging grid. The average rel-
ative power error is defined as the absolute difference between the
actual source power and the reconstructed source power, relative to
the actual source power, averaged over all sources. The results for all
simulated source scenarios and noise conditions are listed in tables
1 and 2. The stars behind the numbers for CLEAN-SC mean that
the algorithm failed to separate the two sources and produced a sin-
gle strong source. The daggers behind the numbers for GIB signify
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Fig. 1. Simulated results for scenario 1 with f = 2 kHz and no
noise showing the delay-and-sum image (top left); as well as the de-
convolved images from COMP-DAMAS (top right), OMP-DAMAS
(middle left), CLEAN-SC (middle right), SC-RDAMAS (bottom
left), and GIB (bottom right). The black circles indicate the actual
sources positions. The unit on the axes is meter.

that the algorithm failed to identify the weakest source, and that the
average was taken over the 3 strongest sources.

Table 1 demonstrates that the accuracy in terms of DOA of
COMP-DAMAS is on par with SC-RDAMAS and GIB, and su-
perior to OMP-DAMAS and CLEAN-SC. Table 2 shows that the
reconstructed power accuracy of COMP-DAMAS is better than the
other methods for high SNR, and about the same as OMP-DAMAS
for lower SNR (and still better than CLEAN-SC, SC-RDAMAS and
GIB). CLEAN-SC struggles with separating the two closely spaced
sources in scenario 2, which leads to very inaccurate source power
estimates.

Though the algorithm implementations have not been exten-
sively optimized, it may still be instructive to compare the average
runtimes on the simulated data. Since beamforming is common to
all of the methods we have excluded it from the runtime compar-
ison. Relative to OMP-DAMAS, which is the fastest of the four
algorithms, the average runtime of COMP-DAMAS is about 2.5,
about 160 for CLEAN-SC, about 800 for SC-RDAMAS, and about
1900 for GIB. Relative to the time needed for beamforming the
difference between COMP-DAMAS and OMP-DAMAS is less than
one tenth. For practical purposes, COMP-DAMAS is thus as fast as
OMP-DAMAS, and more accurate.
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Table 1. Average position error for simulated data [meter]
COMP- OMP- CLEAN SC-

Scenario SNR DAMAS DAMAS -SC RDAMAS GIB
1 ∞ 0.14 0.28 0.28 0.14 0.14
1 0 dB 0.14 0.28 0.21 0.14 0.14
1 −6 dB 0.14 0.28 0.21 0.14 0.14
1 −9 dB 0.14 0.28 0.21 0.14 0.14
1 −12 dB 0.14 0.28 0.21 0.14 0.14
2 ∞ 0.10 0.17 0.17? 0.10 0.10
2 0 dB 0.10 0.17 0.17? 0.10 0.10
2 −6 dB 0.10 0.17 0.17? 0.10 0.10
2 −9 dB 0.10 0.24 0.10? 0.10 0.10
2 −12 dB 0.17 0.24 0.17? 0.10 0.10
3 ∞ 0.16 0.32 0.23 0.16 0.16
3 0 dB 0.16 0.32 0.23 0.20 0.16
3 −6 dB 0.16 0.32 0.29 0.20 0.16†

3 −9 dB 0.16 0.32 0.29 0.20 0.21†

3 −12 dB 0.16 0.36 0.29 0.20 0.21†

Table 2. Average relative power error for simulated data [%]
COMP- OMP- CLEAN SC-

Scenario SNR DAMAS DAMAS -SC RDAMAS GIB
1 ∞ 3 12 31 24 27
1 0 dB 3 13 24 23 28
1 −6 dB 4 13 38 23 27
1 −9 dB 6 12 20 23 26
1 −12 dB 13 11 24 23 24
2 ∞ 4 7 61? 15 52
2 0 dB 3 6 57? 23 52
2 −6 dB 4 5 58? 24 49
2 −9 dB 7 11 67? 18 40
2 −12 dB 17 18 67? 25 36
3 ∞ 3 10 21 42 21
3 0 dB 3 8 20 44 21
3 −6 dB 7 4 20 41 25†

3 −9 dB 9 8 20 43 25†

3 −12 dB 20 23 21 39 27†

5. APPLICATION TO EXPERIMENTAL DATA

To test the proposed method and compare its accuracy with similar
methods for solving the DAMAS inverse problem we have set up an
experiment using two identical loudspeakers emitting uncorrelated
white noise. We have applied COMP-DAMAS and the four other
methods also used in section 4 to the DAS image for f = 2.4 kHz
with 40 × 30 source points. We have used K ∈ {10, 100, 1000}
snapshots at 128 samples each to estimate the CSM. The DAS image
along with the deconvolved images for K = 1000 are shown in
fig. 2. We have used the same position error metric as in section 4 to
evaluate the various methods, the results of which are summarized in
table 3. As before, the dagger symbol signifies that the GIB method
failed to locate the weakest source for K ∈ {10, 100} and the listed
number is only applicable to the strongest source. These results show
that COMP-DAMAS is more accurate than the other methods in this
experimental situation (except maybe CLEAN-SC atK ≥ 100), and
performs well even on few samples (10 snapshots of 128 samples
at a sampling rate of 44.1 kHz corresponds to a sampling duration
of 29 ms). We have not calculated the reconstructed source power
error, since we did not have access to accurate measurements of the
source power.

6. CONCLUSION

We have presented an acoustic deconvolution method for solving
the DAMAS inverse problem, which we refer to as Clustered OMP-
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Fig. 2. Experimental results showing the delay-and-sum image for
f = 2.4 kHz and K = 1000 (top left); as well as the deconvolved
images from COMP-DAMAS (top right), OMP-DAMAS (middle
left), CLEAN-SC (middle right), SC-RDAMAS (bottom left), and
GIB (bottom right). The black circles indicate the actual source po-
sitions. The unit on the axes is meter.

Table 3. Average position error for experimental data [meter]
COMP- OMP- CLEAN SC-

K DAMAS DAMAS -SC RDAMAS GIB
10 0.03 0.13 0.10 0.07 0.28†

100 0.07 0.15 0.04 0.07 0.08†

1000 0.03 0.15 0.04 0.07 0.18

DAMAS (COMP-DAMAS). We have benchmarked its accuracy
against four other algorithms: OMP-DAMAS [17], CLEAN-SC [6],
SC-RDAMAS [12, 13], and GIB [10]. The presented algorithm has
a higher overall accuracy in terms of direction-of-arrival and recon-
structed source power over the range of simulated situations, as well
as on real experimental data. The presented method is practically as
fast as OMP-DAMAS on the simulated data, and substantially faster
than CLEAN-SC, SC-RDAMAS and GIB.

The performance of COMP-DAMAS depends on choosing a
value of the regularization parameter λ that is appropriate for the
given imaging grid density. Future work on this method should
therefore seek to find an automatic method for regularization. An-
other potential improvement is in the way that the final source
powers are synthesized from the expansion coefficients from stage
1. Rather than heuristic clustering and local optimization within
each cluster, improvements might be obtained by using statisti-
cal and/or information-theoretical criteria to determine a globally
optimal model of point sources.
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