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ABSTRACT 

 
This work presents a novel approach for audio event 
recognition. The approach develops a weighted kernel fisher 
sparse analysis method based on multiple maps. The 
proposed method consists of maps extraction and kernel 
weighted Fisher sparse analysis. 

Two maps are firstly extracted from each audio file, i.e. 
scale-frequency map and damping-frequency map. The 
scale and frequency of the Gabor atoms are extracted to 
construct a scale-frequency map. On the other hand, the 
damping-frequency map is generated according to the 
frequency and damping factor of damped atoms. Gabor 
atoms can be utilized to model human auditory perception, 
and the damped atoms can be used to model commonly 
observed damped oscillations in natural signals. This work 
fuses the advantages of these two dictionaries to improve 
the performance of the system. During the recognition stage, 
this work constructs a kernel sparse representation-based 
classifier via the proposed kernel weighted Fisher sparse 
analysis to enhance separability. The proposed kernel 
weighted Fisher sparse analysis combines sparse 
representation with heteroscedastic kernel weighted 
discriminant analysis (HKWDA), which is useful for 
providing a discriminative recognition of audio events 
because a weighted pairwise Chernoff criterion is utilized in 
the kernel space. Experiments on a 20-class audio event 
database indicate that the proposed approach can achieve an 
accuracy rate of 82.70%. Also, integrating the scale-
frequency map with MFCCs increases the accuracy rate to 
87.70%. 
 

Index Terms—Kernel weighted Fisher sparse analysis, 
scale-frequency map, damping-frequency map, kernel 
sparse classification, audio event classification 
 

1. INTRODUCTION 
 
Audio events refer to audio segments that present certain 
event scenarios or human-centered actions, which includes 
human speech and a wide range of non-speech sound 

classes, such as clapping, door knocking, and gunshot firing. 
Automatically audio events recognition has become an 
important issue because the technique can be applied to 
various applications [1]-[6]. 

Compared with the recognition of structured sound, such 
as music, audio event classification must deal with variant 
audio scenes and locations. Signal sources and surroundings 
may change frequently over time. Additionally, when 
desired signals are corrupted or even overwhelmed by 
inferences, sound data may lose their key features. Several 
studies [7, 8] have indicated that unlike structured signals, 
audios events may contain strong temporal features or broad 
flat spectra. Such a phenomenon could make conventionally 
adopted features, such as Mel-frequency cepstral 
coefficients (MFCCs) [9], linear predictive cepstral 
coefficients (LPCCs), and linear predictive coding (LPC) 
inapplicable to audio event classification [7] as these 
features were originally designed for modeling the spectral 
envelope of human vocal tracts [10, 11]. Besides, 
comparative analysis of acoustic models [12] revealed that 
both LPC and LPCCs linearly approximated sound over all 
frequencies. This is inconsistent with the perception of 
human hearing. LPC includes a large portion of the high 
frequency bands of a speech in which contains mostly noise. 
This inclusion of noise information may affect system 
performance. [13]. Although perceptual linear predictive 
(PLP) features [14] and MFCCs modified linear spectral 
distortion of LPCCs  by employing psychophysically based 
Bark-scale and Mel-scale transformations respectively, the 
performance is still limited. Therefore, how to provide an 
algorithm that is feasible for processing unstructured signals 
is of priority concern. 

Our previous work [15] discovered that the nonuniform 
scale-frequency map performs well in the task of sound 
recognition for home automation. However, it is not enough 
to analyze signal by only one dictionary because the 
acoustic properties of various audio events are different 
from each other. To solve the problems in the work of [15], 
this study presents a novel approach, which combines kernel 
weighted Fisher sparse analysis with scale-frequency maps 
and damping-frequency maps to classify audio events. The 
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Fig. 1.  Block diagrams of the audio events recognition system. 

proposed method is characterized by converting multiple 
nonuniform maps into high-dimensional kernel space for 
sufficiently sparse coefficients, using the kernel weighted 
Fisher discriminant criterion. This method integrates both 
advantages of two maps. The scale-frequency maps and 
damping-frequency maps provide human auditory 
perception and damped oscillations analysis on critical 
bands, respectively, especially at low frequencies. Both of 
two maps can enhance separability during classification. 
Besides, this paper further utilizes kernel weighted Fisher 
sparse analysis to offer a discriminative recognition of audio 
events. 

Figure 1 illustrates the system block diagram. Firstly, 
there are two maps extracted from each audio file, including 
scale-frequency map and damping-frequency map. With the 
use of a Gabor atom dictionary, the system can select 
several atoms to approximate the input signal by using the 
matching pursuit (MP) [19] method. Each atom in the 
dictionary takes the form of a Gabor function, which 
consists of frequency, scale, phase, and position information. 
Scale-frequency maps are subsequently generated according 
to the frequency and scale. In the work of damping-
frequency map, the atoms are selected from the damped 
sigmoid dictionary instead of selecting from Gabor atom 
dictionary, and then the damping-frequency map is 
generated according to the frequency and damping factor. 
The damping-frequency map is subsequently combined with 
the Gabor dictionary-based scale-frequency map that 
mentioned before. Next, the two maps are mapped into 
high-dimensional space by a kernel function, forming bases 
of different classes.  

During the classification stage, the kernel weighted 
Fisher sparse analysis transforms the two maps of an 
unknown input into combinational bases of one class by 
using Heteroscedastic Kernel Weighted discriminant 
Analysis (HKWDA) [16] and ℓ1-norm minimization [17]. 
The class with the minimum combinational error is 
subsequently selected as the output. 

The rest of this paper is organized as follows. Section 2 
illustrates the construction of dictionaries. Section 3 
summarizes the performance of the proposed method and 
the analysis results. Conclusions are finally drawn in 
Section 4. 
 

2. DICTIONARIES CONSTRUCTION 
 
2.1. Gabor Dictionary Based on Critical Frequency 
Bands 
 
In this subsection, the detail of dictionary and the Gabor-
based scale-frequency map are explained, which are briefly 
mentioned before. In MP algorithm, the choice of 
dictionaries significantly impacts the sound categorization 
ability. Chu et al. [7] have evaluated several dictionaries 
such as Fourier, Haar, and Gabor functions for their 
performance in sound classification. After many works, they 
have discovered that the Gabor dictionary could yield better 
results than the other dictionaries. This paper follows the 
suggestion of [15] to calculate scale-frequency maps. 
 
Let ρ denote the scale, which controls the width of the 

Gabor function; 
u represent the central temporal position of the Gabor 

function; 
f refer to the frequency; 
θ denote the phase; 
t represent the time index; 
K refer to the normalization factor such that ||Gρ,μ,f,θ||2 

= 1. 
The Gabor function can be expressed as 
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Here, this paper makes the following options in the 
construction of the Gabor dictionary. The following 
parameters are selected to generate the Gabor atoms: ρ = 
{ 2 | 1, 2, ,8j j = … }, u = {0, 64, 128, 192}, f = {150, 450, 
840, 1370, 2150, 3400, 5800}, θ = 0, and t = 0–255. Totally, 
there are 224 atoms (7 frequencies × 8 levels of scale × 4 
central positions) in the dictionary. 

Notably, the frequencies selected here for scanning 
atoms are based on the critical bands for human auditory 
perception [18, 21]. To restate, f is selected from the critical 
bands. Consequently, the Gabor dictionary is generated 
based on critical frequencies.  

 
2.2. Damped Sinusoids Dictionary 
 
This subsection describes the details of the damped 
sinusoids dictionary and damping-frequency map. Damped 
sinusoids attempt to model commonly occurring damped 
oscillations in natural signals [19]. Damped sinusoids are 
more appropriate than symmetrical Gabor atoms for 
representing transients. Therefore, the proposed method 
combines the damping-frequency map with the scale-
frequency map. The damped sinusoids dictionary can take 
the following form 
 
Let  a denote the damping factor, which controls the 

width of the damped sinusoids function; 
u represent the central temporal position of the 

damped sinusoids function; 
ω refer to the frequency; 
θ denote the phase; 
n represent the time index; 
S refer to the normalization factor such that ||Sρ,μ,f,θ||2 

= 1. 
The damped sinusoids function can be expressed as 

 
[ ] [ ]τφτωτ

φτωφτω −+−= −+ nunaSg n
aa )(cos)(

},,,{},,,{      (2) 
 
Here, the following parameters are selected to generate the 
damped sinusoids: a = {0.11*j | j=2,3,…,9}, u = {0, 64, 128, 
192},ω= {150, 450, 840, 1370, 2150, 3400, 5800}, θ = 0, 
and t = 0–255. Totally, the dictionary contains 224 atoms (7 
frequencies × 8 levels of scale × 4 central positions). 
 

3. EXPERIMENTAL RESULTS 
 
An audio database consisting of 20 classes was used for our 
experiments. Totally, there were 899 audio event clips, 
which cover various audio events, such as clapping, 
coughing, double clapping, female speeches, door knocking, 
laughing, male speeches, and screaming. The number inside 
the parentheses refers to the number of files in each class. 
Each clip lasted five seconds, and the sampling rate was 16 

kHz with a resolution of 16 bits per sample. The frame size 
was 256 samples, with a 50% overlap in the two adjacent 
frames. 

Each audio clip was divided into segments, with each one 
containing 16 frames. Finally, 50% of the dataset was used 
for training and 50% for testing by adopting cross-
validation method. 
 
3.1. Comparison of Different Dictionary Sizes in Terms 
of Classification Results 
 
Before the other approaches are more thoroughly compared 
with each other, exactly which dictionary size is most 
effective for the proposed system is discussed first. Given 
that the value of a dictionary affects the solution of sparse 
coefficients, different dictionary sizes must be evaluated to 
obtain better classification results. The dictionary size 
evaluated in this subsection contains six values, i.e. 170, 
227, 284, 341, 398, and 455. Each of these six values refers 
to a certain proportion of the entire training data set, i.e. 3/8, 
4/8, 5/8, 6/8, 7/8, and 1. This work does not evaluate the 
two subsets refer to the 1/8 and 2/8 proportion of the entire 
training data set because the dictionary in sparse 
representation must be overcomplete. Besides, in this 
subsection, the proposed system adopts polynomial in 
HKWDA temporarily. According to Fig. 2, using the entire 
training data set to construct the dictionary is feasible for 
the proposed system. 
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Fig.2. Comparison of different dictionary sizes in terms 

of accuracy rate. 
 
3.2. Comparison of Various Kernels in HKWDA in 
Terms of Classification Results 
 

This section evaluates the performance of the proposed 
system for various kernel types used in HKWDA. Four 
kernel types are tested: radial basis function kernel, 
polynomial kernel, linear kernel, and sigmoid kernel. Table 
1 reveals that radial basis function kernel performs 
optimally for the proposed system. 

6012



 
Table 1. Comparison of different kernel types in terms of 

accuracy rate. 
Kernel Type Accuracy Rate (%)

Radial basis function 82.77 
Polynomial 80.31 

Linear 64.21 
Sigmoid 64.42 

 
3.3. Comparison of the Proposed Method and the Other 
Approaches 
 
Recognition performance was assessed by designing an 
experiment to test the following approaches: 
I. Frame-averaged MFCC (13) + SVM [20]: This 

baseline follows the idea of Temko’s research [20] and 
uses a 13-dimensional frame-averaged MFCC feature. 
In addition, an RBF-kernel SVM is adopted in this 
system.  

II. SFM+PCA+LDA+SVM [15]: This baseline follows 
the work of [15]. In this baseline, Principle Component 
Analysis (PCA) and LDA are applied to the scale-
frequency map, subsequently generating the feature. 
During the classification phase, a segment-level 
multiclass SVM is operated. 

III. Proposed system I - Two maps + sparse representation 
classification: This method uses the scale-frequency 
map and the damping-frequency map as features, and 
sparse representation classification is adopted.  

IV. Proposed system II - Two maps + Frame-averaged 
MFCC + sparse representation classification: As same 
as the proposed system I. However, instead of 
proposed kernel sparse representation-based classifier, 
the traditional sparse representation classification is 
adopted.  

V. Proposed system III - Two maps + kernel weighted 
fisher sparse analysis: As mentioned earlier, the 
proposed method consists of two processes. One is the 
extraction of two maps, and the other is kernel 
weighted fisher sparse analysis. When an unknown 
signal is input to the system, important atoms are 
extracted by using the matching pursuit algorithm. 
Scale-frequency map and damping-frequency map are 
firstly extracted from each audio file. Subsequently, the 
two mean maps based on all the frame-level maps are 
calculated. After feature extraction, the kernel 
weighted fisher sparse analysis based classification 
method is adopted. 

VI. Proposed system IV – Two maps + Frame-averaged 
MFCC + kernel sparse representation-based 
classification: In this method, the scale-frequency map 
and damping-frequency map are concatenated with 
MFCCs. The kernel weighted fisher sparse analysis 
based classification method is also adopted in this 
system.  

 
Table 2. Comparison between different methods. 

Method Accuracy Rate 
(%) 

I:     Frame-averaged MFCC + SVM 
[20] 74.50 

II:    SFM+PCA+LDA+SVM [15] 76.70 
III:   Proposed system I - Two maps + 

sparse representation 
classification 

80.76 

IV:   Proposed system II - Two maps + 
Frame-averaged MFCC + sparse 
representation classification 

83.67 

V:    Proposed system III – Two maps 
+ kernel weighted fisher sparse 
analysis  

82.77 

VI:   Proposed system IV - Two maps 
+ Frame-averaged MFCC + 
kernel weighted fisher sparse 
analysis 

87.70 

 
Table 2 compares the results of the different approaches, 
where the first column of the table is the test approach, and 
the second is the accuracy rate. Clearly, the proposed 
system IV can achieve as high an accuracy rate as 87.70%. 
In comparison with methods I, II, III, IV, and V, the 
recognition rate of the method IV was increased by 13.20%, 
11.00%, 6.94%, 4.03%, and 4.93%, respectively. 
Additionally, the proposed system IV also outperformed the 
other five methods by 8.02% on average. 
 

4. CONCLUSION 
 
This work has developed a novel audio event recognition 
approach. Firstly, the scale-frequency map and the damping 
frequency map are constructed and combined with each 
other. The scale-frequency map is constructed to model 
human auditory perception; the damping-frequency map is 
constructed to model the common occurrence of damped 
oscillations in natural signals. Combining these two maps 
provides more detailed information on signal characteristics 
at low frequencies. To further improve the performance of 
the system, this paper utilizes kernel weighted Fisher sparse 
analysis to enhance separability. Six analyses were 
performed to evaluate the effectiveness of the proposed 
method. The analysis results indicated that the overall 
accuracy could reach as high as 87.70%, i.e. significantly 
higher than the other five approaches. 

In contrast with the baselines, experimental results 
demonstrated that the proposed method is more appropriate 
for audio event recognition. Our results further verified the 
performance of the proposed system, as well as the 
feasibility of the proposed algorithm. 
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