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ABSTRACT
A sensor network wishes to transmit information to a fusion center to
allow it to detect a public hypothesis, but at the same time prevent it
from inferring a private hypothesis. We propose a multilayer sensor
network structure, where each sensor first applies a nonlinear fusion
function on the information it receives from sensors in a previous
layer, and then a linear weighting matrix to distort the information
it sends to sensors in the next layer. We adopt a nonparametric ap-
proach and develop an algorithm to optimize the weighting matrices
so as to ensure that the regularized empirical risk of detecting the
private hypothesis is above a given privacy threshold, while mini-
mizing the regularized empirical risk of detecting the public hypoth-
esis. Simulations on a synthetic dataset and an empirical experiment
demonstrate that our approach is able to achieve a better trade-off be-
tween the error rates of the public and private hypothesis than using
only linear precoding to achieve information privacy.

Index Terms— Information privacy, Internet of Things, non-
parametric detection, sensor network.

1. INTRODUCTION

With the popularity of Internet of Things (IoT) devices like on-body
sensors, smart home appliances, and smart phones [1–4], massive
amounts of data about users’ habits, routines and preferences are be-
ing collected by service providers. Sensors make observations, and
sends their data to a fusion center [5–9] to allow service providers to
perform inferences that can potentially improve the quality of life.
However, the same data can also be exploited to learn users’ pri-
vate behaviors, habits and lifestyle choices. As the number of IoT
devices is increasing, ensuring users’ privacy has gained traction in
both the IoT industry and research community. For instance, Apple
has recently announced that it will incorporate differential privacy
mechanisms into its data collection process [10].

Most privacy preserving mechanisms proposed in the literature
concerns data privacy, i.e., the prevention of any statistical algo-
rithms operating on the data from inferring much about each individ-
ual datum. This is the original premise of differential privacy [11].
For example, privacy preserving support vector machine (SVM) has
been proposed to transform the support vectors to hide individual
datum from the fusion center, while still allowing it to make infer-
ences using all the data [12]. Privacy preserving mechanisms have
also been proposed for neural networks [13]. However, in the case
where multiple sensors are used to monitor a target of interest (an
example is the use of on-body sensors), then preserving the privacy
of each sensor’s data does not preserve the privacy of the target of
interest. Statistical inferences can still be made regarding certain
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Fig. 1. Information privacy using a multilayer network.

private aspects of the target, even though the sensor data is suppos-
edly to be used to monitor a public aspect of the target. A specific
example is the use of on-body sensors in elderlies to detect falls.
Data privacy mechanisms can protect the privacy of the data col-
lected by each sensor, but do not prevent the same data from being
used to infer if the person is performing other actions. We call the
prevention of statistical information leakage from a database infor-
mation privacy. A technical criterion for information privacy was
first proposed by [14], while practical nonparametric approaches to
achieving information privacy in distributed sensor networks were
developed in [15, 16]. In [15], a nonlinear probabilistic mapping is
used to distort each sensor’s local observations before being sent to
the fusion center. This mapping is designed to prevent the fusion
center from inferring about a private hypothesis, while still allow-
ing it to detect a public hypothesis. However, finding the optimal
mappings becomes computationally complex when the range of the
mapping is large. In [16], a low complexity linear precoder at each
sensor is used instead. By tuning the linear precoder, the fusion cen-
ter is again prevented from inferring a private hypothesis. However,
in some cases, the error detection rate of the public hypothesis may
deteriorate significantly.

In this paper, we propose a multilayer sensor network architec-
ture (see Fig. 1) to achieve a better trade-off between information pri-
vacy and inference of the public hypothesis. Our inspiration comes
from neural networks, a multilayer nonlinear structure that has been
validated in various applications to be a flexible representation sys-
tem for feature extraction and learning [17, 18]. Our experiments
suggest that using a multilayer nonlinear structure in a sensor net-
work has the potential to balance the distortion in information re-
lated to the private hypothesis and the representation of the public
hypothesis. In particular, information from one layer of sensors is
first linearly weighted with a weighting matrix before sending to all
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sensors in the next layer. Each sensor in the next layer then uses
a nonlinear function to fuse the information it has received, before
repeating the procedure. The nonlinear fusion function is fixed, but
the weighting matrices are optimized so that detecting the private
hypothesis at the final fusion center is difficult, while keeping the
accuracy of detecting the public hypothesis reasonable. The pro-
posed method is tested with a synthetic dataset and an experiment
using real images. Both tests demonstrate that our proposed method
achieves high error detection rate for the private hypothesis, and low
error detection rate for the public hypothesis.

The rest of this paper is organized as follows. In Section 2,
we present a multilayer sensor network structure to protect informa-
tion privacy. We then develop an algorithm to design the multilayer
weighting matrices in Section 3. Simulation results are presented in
Section 4, and Section 5 concludes the paper.

2. MULTILAYER NETWORK FOR INFORMATION
PRIVACY

Consider the multilayer sensor network shown in Fig. 1. Each sen-
sor t = 1, 2, . . . , s in the first layer makes a local observation Xt ∈
Rr×k, which is distributed according to an unknown distribution de-
pending on a pair of hypotheses (p, q) ∈ {−1, 1}2. The hypothesis
p is the public binary hypothesis that the sensor network wants the
fusion center to detect, while q is a private binary hypothesis whose
true state the sensor network wishes to protect from the fusion center.
In order to protect the private hypothesis, each sensor applies a linear
weight to its observation before sending to all the sensors in the sec-
ond layer of the network. Let X = [(X1)T , . . . , (Xs)T ]T ∈ Rrs×k

be the collection of all sensor observations, and let the received in-
formation at each sensor in the second layer be G1X, where G1 ∈
Rd×rs is the weighting matrix or linear precoder used by the sen-
sors in the first layer. Each sensor in the second layer then applies a
nonlinear fusion function h(·) to G1X and weigh it with G2 before
sending G2h(G1X) to sensors in the third layer. This process is
repeated until the fusion center receives

Z(X) = GMh(GM−1h(· · ·h(G1X))), (1)

where M is the number of layers in the network. The nonlinear
function h(·) is fixed, but we tune G = {Gm}Mm=1 in order to
make it difficult for the fusion center to detect the private hypothe-
sis q. In this paper, we assume that we do not know the underlying
distributions relating the sensor observations and the hypotheses. In-
stead, we are given a training set consisting of independent and iden-
tically distributed (i.i.d.) samples (Xi, pi, qi)

l
i=1. Let Zi = Z(Xi).

We assume that the fusion center has access to the training sam-
ples (Zi, pi, qi)

l
i=1, and trains a Tikhonov regularized empirical risk

function [19] as a classifier for both p and q.
Our goal is to find G so as to minimize the regularized empirical

risk of detecting p at the fusion center, while keeping the regularized
empirical risk of detecting q above a given privacy threshold θ, i.e.,
we solve the following optimization problem:

min
G∈G,wα

l∑
i=1

ϕ(pi⟨wα,Φ(Zi)⟩H) +
λα

2
∥wα∥22,

s.t. min
wβ

l∑
i=1

ϕ(qi⟨wβ ,Φ(Zi)⟩H) +
λβ

2
∥wβ∥22 ≥ θ,

(2)

where ϕ(·) is a convex loss function, w belongs to a reproducing
kernel Hilbert space H with kernel κ(·, ·) and feature map Φ(·), and

⟨·, ·⟩H is the inner product of H. The constants λα and λβ are pos-
itive regularization constants. The weighting matrices G are chosen
to be within a constraint set G ⊂ Rd×rs of matrices. The set G is
defined in practice to have certain desirable properties in order to
facilitate implementation. In this paper, we consider two cases for
G: (i) G can take any value in Rd×rs, and (ii) the matrices G are
positive semi-definite (PSD) matrices with small trace. Since the
rectifier linear unit h(x) = max(0, x) induces sparsity and facili-
tates training and implementation [20], we adopt this as h(·) in the
rest of this paper. In addition, for illustrative purposes, we will adopt
the Gaussian kernel, i.e., κ(Zi,Zj) = exp(−γ∥Zi − Zj∥2F ), in
our presentation. We derive algorithms to first find an appropriate
privacy threshold θ and then to solve (2) for the optimal G.

3. ALGORITHM DESIGN

Given the weighting matrices G, both public and private classifiers
can be obtained from their dual problems. Therefore, the optimiza-
tion problem (2) can be written as

min
G∈G,wα

l∑
i=1

ϕ(pi⟨wα,Φ(Zi)⟩) +
λα

2
∥wα∥22,

s.t. max
β

−
l∑

1=1

ϕ∗(−βi)−
1

2λβ
(q ◦ β)TK(G,X)(q ◦ β) ≥ θ,

(3)

where q = (qi)
l
i=1, X = {Xi}li=1, the (i, j)-th element of

K(G,X) is κ(Zi,Zj). The function ϕ∗(·) is the conjugate function
of ϕ(·). For example, if the logistic loss function is adopted, then
ϕ∗(−βi) = βi lnβi + (1− βi) ln(1− βi) with domain βi ∈ [0, 1].
If the hinge loss function is adopted, then ϕ∗(−βi) = −βi with
domain βi ∈ [0, 1].

The optimization problem (3) is nonconvex. Therefore, using a
gradient based method to solve it is preferred [19]. Depending on
the specific constraint set G, we derive the gradients of the objective
functions in (3) as follows. We also show how to choose the privacy
threshold θ using an iterative procedure.

3.1. General Weighting Matrices

If the weighting matrix Gm is allowed to take any value in Rd×rS ,
the gradient of the empirical error of the private hypothesis in (3)
with respect to (w.r.t.) Gm is

gβ(G,βk) =
γ

λβ

l∑
i=1

l∑
j=1

exp(−γ∥Zi − Zj∥2F )βiβjqiqjDm, (4)

where for 2 ≤ m ≤M − 1,

Dm = Bm(i, j)Fm−1(Xi) +Bm(j, i)Fm−1(Xj), (5)

D1 = B1(i, j)XT
i +B1(j, i)XT

j , (6)

DM = (Zi − Zj)[F
M−1(Xi)− FM−1(Xj)], (7)

with

Fm(Xi) = [h(Gm · · ·h(G1Xi))]
T , (8)

Imi = 1{h(Gm · · ·h(G1Xi)) > 0}, (9)

Bm(i, j) =
[
Imi ◦ ((Gm+1)T · · · [IM−1

i ◦ ((GM )T (Zi − Zj)))]
]
,

(10)
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Table 1. Algorithm to find θ∗

With a random initialization G[0] and n = 0, iterate the following
two steps until convergence.
Step 1. Solve the following convex problem,

max
β

−
∑l

i=1
ϕ∗(−βi)−

1

2λβ
(q◦β)TK(G[n],X)(q◦β) (13)

Denote the optimum solution as β[n] and the optimal value asL[n].
Step 2. Sequentially update {Gm[n + 1] = Gm[n] +
∆tmgβ(G

m[n],β[n])}Mm=1 from the M -th layer to the first layer,
∆tm is obtained by backtracking line search.
If (L[n+1]−L[n])/L[n] ≤ ϵ, the iteration between the two steps
is terminated and θ∗ = L[n+ 1]. Increment n by one.

Table 2. Algorithm to solve problem (3)
With the final solution G[n] in Table 1, iterate the following two
steps until convergence.
Step 1. Solve the convex problem (11), and let the optimal solution
and optimal value be denoted as α[n] and L[n], respectively.
Step 2. Sequentially update {Gm[n + 1] = Gm[n] −
∆tmgα(G

m[n],α[n])}Mm=1 from the M -th layer to the first layer,
where ∆tm is obtained by backtracking line search, which is re-
stricted such that the objective function (3) is decreased and the
privacy restriction in (3) is satisfied (with undated β).
The termination criterion is (L[n]− L[n+ 1])/L[n] ≤ ϵ. Finally,
increment n by one.

and 1{·} being a pointwise indicator function.
With the gradients derived in (4), we can now use an iterative

gradient-based method to solve

max
G,β

−
l∑

1=1

ϕ∗(−βi)−
1

2λβ
(q ◦ β)TK(G,X)(q ◦ β),

which gives us the best empirical risk of detecting the private hy-
pothesis q under the worst case G. Let this be θ∗. We then choose
θ = pθ∗, where p ∈ (0, 1). The algorithm to find θ∗ is listed in
Table 1.

Similarly, the problem (3) can be solved by an alternative mini-
mization between wα and G. With a fixed feasible G, the optimal
wα =

∑l
j=1 αjpjΦ(Zj), and the optimal dual variable α is ob-

tained from the convex problem

max
α

−
∑l

1=1
ϕ∗(−αi)−

1

2λα
(p ◦α)TK(G,X)(p ◦α). (11)

Furthermore, owing to the strong duality between the dual (11) and
its primal problem, the gradient of the empirical error for the public
hypothesis in (3) w.r.t. Gm can be derived from (11), and is given
by,

gα(G,αk)=
γ

λα

l∑
i=1

l∑
j=1

exp(−γ∥Zi − Zj∥2F )αiαjpipjD
m. (12)

The algorithm to solve (3) is listed in Table 2.

3.2. PSD Weighting Matrices With Small Trace

In order to reduce the model complexity of the sensor network, we
now restrict for all m ≥ 1, Gm to belong to the set Gm of PSD

matrices with trace Tr(Gm) = rm. To reflect the geometry of the
given constraint set, a common nonlinear projection method to mod-
ify the gradient update is to utilize the Bergman divergence as a dis-
tance measure [21]. In each iteration of algorithms in Tables 1 and
2, with gradient g(Gm[n],α[n]) and stepsize ∆tm, the modified
Gm[n+ 1] is obtained from

min
H∈Gm

⟨g(Gm[n],α[n]),H−Gm[n]⟩+∆tmB(H,Gm[n]) (14)

where the Bergman divergenceB(H,Gm[n]) = ψ(H)−ψ(Gm[n])−
⟨ψ′(Gm[n]),H−Gm[n]⟩, ψ(H) =

∑rs
i=1 λi(H) ln(λi(H)), and

⟨A,B⟩ = Tr(ABT ).
However, when the gradient is not symmetric, its complex eigen-

value leads to an invalid objective function in (14). Therefore, we
use a two-step projection method instead:

H∈Gm
min ⟨P (g(Gm[n],α[n])) ,H−Gm[n]⟩+∆tmB(H,Gm[n])

(15)
where P (g(Gm[n],α[n])) = (g(Gm[n],α[n])+g(Gm[n],α[n])T )/2,
is optimal solution of minY=YT ∥Y − g(Gm[n],α[n])∥2F . There-
fore, (15) is simplified as

H∈Gm
min ⟨P (g(Gm[n],α[n]))−∆tmψ

′(Gm[n]),H⟩+

∆tm
∑rs

j=1
λj(H) ln(λj(H)) (16)

where ψ′(Gm[n]) =
∑rs

j=1(ln(λj(G
m[n]))+1)uju

T
j ,1, and uj is

the j-th eigenvector of the matrix Gm[n]. The closed form solution
of (16) is described as follows.

Proposition 1. The optimal solution of (16) is H = UDiag(λ(H))UT ,
where U comes from the eigendecomposition P (g(Gm[n],α[n]))−
∆tmψ

′(Gm[n]) = UDiag(h)UT , and λj(H) = rm exp(−hj/∆tm−
1)/

∑rs
j=1 exp(−hj/∆tm − 1)

Proof. Since the symmetric matrix can be factorized as H =
UDiag(λ(H))UT , it is obvious that the eigenvectors of the opti-
mal solution in minH⟨P (g(Gm[n],α[n]))−∆tmψ

′(Gm[n]),H⟩
are the eigenvectors of P (g(Gm[n],α[n])) − ∆tmψ

′(Gm[n]) =
UDiag(h)UT . Therefore, the problem (16) is simplified as,

{λj(H)}rsj=1

min
∑rs

j=1 λj(H)hj +∆tm
∑rs

j=1 λj(H) ln(λj(H))

s.t.
∑rs

j=1 λj(H) = rm
{λj(H) ≥ 0}rsj=1

(17)

The Lagrange of (17) is

L =
∑rs

j=1
λj(H)hj +∆tm

∑rs

j=1
λj(H) ln(λj(H))

+ µ(
∑rs

j=1
λj(H)− rm)−

∑rs

j=1
νjλj(H), (18)

then ∂L
∂λj(H)

= 0 leads to the condition λj(H) = exp((νj −
µ)/∆tm) exp(−hj/∆tm − 1). Since the problem (17) is a convex
problem, the optimal solution comes from the K.K.T. condition.

{λj(H) = exp((νj − µ)/∆tm) exp(−hj/∆tm − 1)}rsj=1∑rs

j=1
λj(H) = rm, µ ∈ R, {νj ≥ 0}rsj=1, {νjλj(H) = 0}rsj=1.

Then the solution is rm exp(−hj/∆tm−1)/
∑rs

j=1 exp(−hj/∆tm−
1).

1When λj(G
m[n]) is close to zero, computing ln(λj(G

m[n])) may
result in numerical instability. This problem can be alleviated by letting
λj(G

m[n]) = ε whenever λj(G
m[n]) ≤ ε, where ε is the numeric ac-

curacy level.
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Table 3. Adaptation of algorithms in Table 1 and Table 2
Initialization: The start point {Gm[0] ∈ Gi}Mm=1.
Step 1. Same as Step 1 in Table 1 and Table 2, respectively.
Step 2. In Table 1, update Gm[n + 1] as the result in Proposition
1 with g(Gm[n],α[n]) = −gβ(G

m[n],β[n]). In Table 2, update
Gm[n + 1] as the result in Proposition 1 with g(Gm[n],α[n]) =
gα(G

m[n], α[n]).

The softmax expression of the closed form solution exaggerates
the differences between {hj}rsj=1, which induces low rank weighting
matrices G. The algorithms in Table 1 and 2 are updated as Table 3.

4. EXPERIMENTAL EVALUATION

The performance of our proposed algorithm with hinge loss function
is tested under a synthetic dataset and an empirical experiment using
real images. The weighting matrix Gm[0] at each layer is initialized
as a normalized identity matrix, the kernel parameter γ is the inverse
of the median of the set {∥GM [0]h(GM−1[0]h(· · ·h(G1[0]Xi)))−
GM [0]h(GM−1[0]h(· · ·h(G1[0]Xj)))∥2F |i, j ∈ [1, l], i ̸= j}, the
termination threshold ϵ = 10−3, and {rm = 1}Mm=1.

4.1. Synthetic Dataset

In the synthetic dataset, the data sample is generated as Xi =
1{qi=1}ai + 1{pi=1}bi + ni ∈ R3×80, where ai = Rφ(i)[a,a +

1, 10a + 2]T , with Rφ(i,t) being a rotation matrix with random
rotation angle φ(i) uniformly generated from [0, 30◦] and a ∈ R80

being a vector of 80 evenly spaced points in [−1, 1], is a rotated
line segment whose presence or absence is the private hypothesis;
bi = Rφ(i)[cos(b), sin(b),b]

T , with b ∈ R80 being a vector of 80
evenly spaced points in [0, 10π], is a rotated helix whose presence
or absence is the public hypothesis; and ni is white Gaussian noise
with zero mean and standard deviation σ = 15. The training sample
size is 50, and the testing sample size is 950. The regularization
parameters are tuned to be [λα, λβ ] = [1, 0.01], and the threshold
p = 0.8, 0.9, 0.96, 0.96 are fixed for the linear precoding [16], mul-
tilayer nonlinear (MLN) mapping with M = 2, 3, 4, respectively.

The upper part of Fig. 2 shows that the private hypothesis error
rates are similar and close to 40% for linear precoding (M=1) and
MLN methods (M=2,3,4), while the MLN method with larger layer
number has lower public hypothesis error rate. The lower part of
Fig. 2 compares the private hypothesis error rates of different meth-
ods under different SVM detections [19]. The private hypothesis
error rates of the linear and MLN methods are all higher than the no
mapping method, in which the observed data is directly sent to the
fusion center. Therefore, the proposed method preserves information
privacy under different SVMs, and detect the public information at
the same time.

4.2. Experiment With Real Images

We use a webcam to record a image, which may depict a gun or cash.
The presence or absence of a gun is the public hypothesis, and the
presence or absence of cash is the private hypothesis. One image
sample is shown in Fig. 3. The original image is evenly sampled
from 400×400 to 40×40. The training sample size is 50, and the
test sample size is 150. The regularization parameters are tuned to
be [λα, λβ ] = [0.01, 0.2], and the threshold p = 90%.

Table 4 shows that the public hypothesis error rate of the MLN
approach is much smaller than that of the linear precoder method,

Layer Number
1 1.5 2 2.5 3 3.5 4

E
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or
 R

at
e

10-3

10-2

10-1

100

Private
Public

The regularization parameterλof different SVMs
10-1 100 101

P
riv

at
e 

H
yp

ot
he

si
s 

E
rr

or
 R

at
e

0.3

0.35

0.4

0.45

0.5

MLN mapping M=2
MLN mapping M=3
MLN mapping M=4
Linear precoding
No mapping(raw data)

Fig. 2. Synthetic dataset. Top: Error rates for different M . Bottom:
Error rates for different methods.

Fig. 3. Image experiment. The presence or absence of a gun and
cash are the public and private hypothesis, respectively.

Table 4. Error rates in real image experiment.
Hypothesis error rate Public Private
SVM with raw data 32.67% 41.3%
Linear precoding [16] 26% 48%
MLN (M=2) 7.33% 45.33%

and the private hypothesis error rates of both methods are close to
50%. This reveals that the multilayer nonlinear structure is better
at representing the public hypothesis while distorting information
related to the private hypothesis. With proposed methods, the private
hypothesis error rates under SVMs with different λβ as that in Fig.
2 are larger than the private hypothesis error rates in Table 4.

5. CONCLUSION

We have proposed a multilayer network structure with nonlinear
mapping at each sensor in order to distort information related to a
private hypothesis. By tuning the weighting matrices at each sensor,
we achieve information privacy protection up to a privacy threshold,
while still allowing the fusion center to detect the public hypothesis
with reasonable error rates. Simulations and empirical experiments
suggest that our proposed multilayer network achieves better perfor-
mance than using a single layer of sensors with linear precoding.
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