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ABSTRACT
In this work, we propose a novel wireless time-reversal indoor
events detection system (TRIEDS). By leveraging the time-
reversal (TR) technique to capture the changes of channel s-
tate information (CSI) in the indoor environment, TRIEDS
enables low-complexity single-antenna devices that operate in
the ISM band to perform through-the-wall multiple events de-
tection. In TRIEDS, each indoor event is detected by match-
ing the instantaneous CSI to a multipath profile in a train-
ing database. To validate the feasibility of TRIEDS and to
evaluate the performance, we build a prototype that work-
s on ISM band with carrier frequency being 5.4 GHz and a
125 MHZ bandwidth. Experiments are conducted to monitor
the states of the indoor wooden doors. Experimental results
show that with a single receiver (AP) and transmitter (clien-
t), TRIEDS can achieve a detection rate higher than 96.92%
and a false alarm rate smaller than 3.08% under either line-
of-sight (LOS) or non-LOS transmission.

Index Terms— Indoor events detection, time reversal
(TR), wireless events detection, spatial-temporal resonance,
through the wall.

1. INTRODUCTION

The past few decades have witnessed the increase in the de-
mand of surveillance systems which aims to capture and to
identify unauthorized individuals and events. With the devel-
opment of technologies, traditional outdoor surveillance sys-
tems become more compact and of low cost. In order to guar-
antee the security in offices and residences, indoor monitoring
systems are now ubiquitous and their demand is rising both in
quality and quantity.

Currently, most indoor monitor systems basically rely on
video recording and require cameras deployments in target
areas. Techniques in computer vision and image processing
are applied on the captured videos to extract information for
real time detection and analysis [1–3]. However, conventional
vision-based indoor monitor systems have many limitations,
such as the requirement of an illuminated line-of-sight (LOS)
path and privacy leakage due to malicious internet attacks.

By utilizing the fact that the received radio frequency (R-
F) signals can be altered by the propagation environment,
device-free indoor sensing systems are capable of capturing
changes in the environments. Due to its susceptibility to the
environmental changes, the received signal strength indica-
tor (RSSI) has been applied to indicate and further recognize
indoor activities [4,5]. Furthermore, CSI information, includ-
ing the amplitude and the phase, is now accessible in many
commercial devices and has been used for indoor event de-
tection [6–9]. Another category of technologies in device-
free indoor monitor systems is adopted from radar imaging
technology to track targets by identifying different time-of-
flights (ToF) of wireless signals through different paths using
ultrawide-band (UWB) [10]. However, the UWB transmis-
sion, which is required to have a fine resolution in ToFs, is im-
practical in commercial indoor monitoring systems, because
it requires specific hardwares for implementation. Recently,
Katabi et al. proposed a new radar-based system to keep track
of different ToFs of reflected signals by leveraging a special-
ly designed frequency modulated carrier wave (FMCW) that
sweeps over different carrier frequencies [11–13]. But their
techniques consume over 1GHz bandwidth to sense the envi-
ronment and only the images of result are obtained from the
sensors, which requires further effort to detect the types of
indoor events.

The aforementioned device-free systems have limitation-
s in that they either require multiple antennas and dedicated
sensors or require LOS transmission environment and ultra-
wideband to capture features that can guarantee the accuracy
of detection. In contrast, in this work, we propose a time-
reversal (TR) based wireless indoor events detection system,
TRIEDS, capable of through-the-wall indoor events detec-
tions with only one pair of single-antenna devices. In the
wireless transmission, the multipath is the propagation phe-
nomenon that the RF signals reaches the receiving antenna
through two or more different paths. As originally investi-
gated in the phase compensation over telephone line [14], TR
technique was then extended to the acoustics [15]. TR tech-
nique treats each path of the multipath channel in a rich scat-
tering environment as a widely distributed virtual antenna and
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Fig. 1: Prototype of TRIEDS.

provides a high-resolution spatial-temporal resonance, com-
monly known as the focusing effect [16]. In physics, the TR
spatial-temporal resonance can be viewed as the result of the
resonance of electromagnetic (EM) field in response to the en-
vironment. When the propagation environment changes, the
involved multipath signal varies correspondingly and conse-
quently the spatial-temporal resonance also changes.

A novel TR-based indoor localization approach, namely
TRIPS, was proposed in [17] and has been implemented on
a WiFi platform [18]. Through non-line-of-sight (NLOS) ex-
periments, TRIPS achieved a perfect 5cm precision with a
single access point (AP). TR based indoor locationing system
was an active localization system in that it required the ob-
ject to be located to carry one of the transmitting or receiving
device.

By utilizing TR technique to capture small variations in
the multipath CSI, TRIEDS is capable of performing highly
accurate indoor events detection. To evaluate the performance
of the proposed system, we build a TR wireless system proto-
type as shown in Figure 1 that operates at 5.4 GHz band with a
bandwidth of 125 MHz. We conduct experiments in an indoor
office on the tenth floor of an sixteen-story building. During
the experiments, we test the capability of TRIEDS of mon-
itoring the states of multiple doors at different locations si-
multaneously. Using only one pair of single-antenna devices,
TRIEDS could achieve perfect detection in LOS scenario and
near 100% accuracy in detection when events happens in the
absence of LOS path between the transmitter (TX) and the
receiver (RX).

This work is organized as follows. The essential tech-
nique, TR, is introduced in Section 2 and the system model,
as well as the methodology that TRIEDS adopts is described
in Section 3. The performance of the proposed TRIEDS is e-
valuated through experiments conducted in real environments
and the results are discussed in Section 4.

2. TIME-REVERSAL TECHNIQUE

A typical TR wireless communication system is shown in Fig-
ure 2 [19]. During the channel probing phase, the transceiver
B sends an impulse to the transceiver A, which gets an esti-

Fig. 2: TR-based wireless communication.

mated CSI h(t) for the multipath channel between A and B.
Then, the corresponding TR signature is obtained by time-
reversing and conjugating the estimated CSI h(t) as g(t) =
h∗(−t). During the second phase, the transceiver A transmits
back g(t) and generates a spatial-temporal resonance at the
transceiver B, by fully collecting and concentrating the ener-
gy of multipath channel. The TR spatial-temporal resonance
can be viewed as the resonance of EM field in response to
the environment, also known as the TR focusing effect [16].
As long as the indoor propagation environment changes, the
received multipath profile varies correspondingly. As a con-
sequence, the spatial-temporal resonance at the receiver side
changes and can be used to track the events in the indoor en-
vironment.

Previous work either views the multipath as the compro-
mise to the system or separates the components in the mul-
tipath CSI by radar-based techniques. As opposed to them,
TRIEDS is proposed as a novel system that monitors indoor
environments and detects indoor events by utilizing TR tech-
nique. In TRIEDS, the complex-valued multipath CSI are
treated as feature vectors that directly represent each indoor
events, and the TR technique is applied to reduce the dimen-
sion of features for classification.

3. SYSTEM MODEL

In this part, we present a detailed introduction to the proposed
TR based indoor events detection system, TRIEDS. The pro-
posed TRIEDS exploits the intrinsic property of TR tech-
nique that the spatial-temporal resonance fuses and compress-
es the information of the multipath propagation environment.
To implement the indoor events detection based on the TR
spatial-temporal resonances, TRIEDS consists of two phases:
the offline training and the online testing.

3.1. Phase 1: Offline Training

During the offline training phase, a database is built where
the multipath profiles of any targets are collected and stored
as the TR signatures. Unfortunately, due to noise and chan-
nel fading, the CSI from a specific state may slightly change
over the time. To combat that, for each state, we collect sev-
eral instantaneous CSI samples for each state. Specifically,

5991



for each indoor state Si ∈ D with D being the state set, the
corresponding training CSI samples are estimated and form a
Hi as,

Hi = [hi,t0 , hi,t1 , · · · , hi,tN−1
], (1)

where N is the size of CSI samples for a training state. hi,tj

represents the estimated CSI vector of state Si at time tj and
Hi is named as the CSI matrix for state Si. The corresponding
TR signature matrix Gi can be obtained by time-reversing the
conjuagted version of Hi as:

Gi = [gi,t0 , gi,t1 , · · · , gi,tN−1
], (2)

where the TR signature gi,tj [k] = h∗i,tj [L − k] is the time-
reversed and conjugated version of hi,tj . Here, the super-
script ∗ on a vector variable represents the conjugate operator.
L denotes the length of CSI and k denotes the index of taps.

Then the training database G is the collection of Gi’s.

3.2. Phase 2: Online Testing

After constructing the training database G, TRIEDS is ready
for real-time indoor state detection, which is indeed a classi-
fication problem. Our objective is to detect the state through
matching its multipath profiles to TR signatures in the train-
ing database G. By leveraging the TR technique, we are
able to naturally compress the dimensions of the CSI through
mapping them into the strength of the spatial-temporal reso-
nances. The definition of the strength of the spatial-temporal
resonance is given as follows.

Definition: The strength of the spatial-temporal reso-
nance (TRRS) T R(h1,h2) between two CSI samples h1 and
h2 is defined as

T R(h1,h2) =

(
max

i

∣∣∣(h1 ∗ g2)[i]
∣∣∣√∑L−1

l=0 |h1[l]|2
√∑L−1

l=0 |h2[l]|2

)2

,

(3)
where “∗” denotes the convolution and g2 is the TR signature
of h2 as, g2[k] = h∗2[L− k − 1], k = 0, 1, · · · , L− 1.

The similarity between CSI samples are quantified by the
value of TRRS. When comparing the estimated CSI with the
TR signature in the database, only when CSI samples are from
the identical state there will be a strong spatial-temporal res-
onance.

During the online monitoring phase, the receiver keep-
s matching the current estimated CSI to the TR signature in
G to find the one that yields the strongest TR spatial-temporal
resonance, computed by the testing CSI matrix H̃ and the sig-
nature matrix Gi for each trained states Si. The strength of
the TR spatial-temporal resonance between the unknown test-
ing CSI samples H̃ and state Si is defined as

T RSi
(H̃) = max

h̃∈H̃
max
hi∈Hi

T R(h̃,hi), (4)

where H̃ is a group of CSI samples assumed to be drawn from
the same state as

H̃ = [h̃t0 , h̃t1 , · · · , h̃i,tM−1
], (5)

and M is the number of CSI samples in one testing group,
similar to the N in the training phase defined in (1).

Besides finding the most possible state by comparing the
strength of TR spatial-temporal resonances, TRIEDS adopts a
threshold-trigger mechanism to avoid false alarms introduced
by events outside D. Hence, TRIEDS reports a change of
states to S∗ only if the maximum of the TR spatial-temporal
resonance strength T RS∗(H̃) reaches a predefined threshold
γ.

Ŝ =

{
S∗, if T RS∗(H̃) ≥ γ,
0, otherwise,

(6)

where S∗ = arg max
Si∈D

T RSi
(H̃). Ŝ = 0 means the state

of current environment is not changed, i.e., TRIEDS is not
triggered for any trained states in D. According to the afore-
mentioned detection rule, a false alarm for state Si happens
whenever a CSI sample is detected as Ŝ = Si but it is not
from state Si.

Although the algorithm for TRIEDS is simple, the accu-
racy of indoor events detection is high and its performance is
validated through multiple experiments in the next section.

4. EXPERIMENTAL EVALUATION

To empirically evaluate the performance of TRIEDS, we
conduct several experiments for door states detection in a
commercial office environment during working hours where
approximately 10 individuals are working in the experiment
area, and all offices surrounding, locating beneath or above
the experimental area are occupied with uncontrollable indi-
viduals. To begin with, experiments are conducted to monitor
states of multiple doors in an uncontrolled indoor environ-
ment. To further evaluate the accuracy in real environments,
the performance of TRIEDS under intentional human move-
ments is studied. We choose the number of the training CSI
samples and the testing CSI samples to be N = 10 and
M = 10 as defined in (1) and (5), considering the fact that
10 CSI samples corresponds to 0.1 second during which the
channel should stay stationary.

4.1. TRIEDS in Normal Office Environments

The detailed setup for this experiment is shown in Figure 3a.
During the experiments, we are monitoring the open/close s-
tates of multiple wooden doors labeled as D1 to D8. Each
location for the transmitter, marked as blue round dots, are
separated by 1 meter, whereas receiver are located on large
stars with label “B” and “C”.

The overall false alarm and the detection rate for TRIEDS
and the RSSI-based approach are shown in the Table 1. Even
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(a) Experimental setting 1. (b) Experimental setting 2.

Fig. 3: Floor plan of the test environment.

axis 1 axis 2 axis 3 axis 4
Detection Rate 96.92 98.95 99.23 99.4

TRIEDS (LOC B)
False Alarm 3.08 1.05 0.77 0.6

TRIEDS (LOC B)
Detection Rate 92.5 94.16 94.77 95.36
RSSI (LOC B)

False Alarm 7.5 5.84 5.23 4.64
RSSI (LOC B)
Detection Rate 97.89 98.94 99.18 99.36

TRIEDS (LOC C)
False Alarm 2.11 1.06 0.82 0.64

TRIEDS (LOC C)
Detection Rate 96.73 97.19 97.35 97.43
RSSI (LOC C)

False Alarm 3.27 2.81 2.65 2.57
RSSI (LOC C)

Table 1: False alarm and detection probability for multi-event
detection of TRIEDS in normal environment .

in the dynamic environment, the proposed TRIEDS can main-
tain a detection rate higher than 96.92% and a false alarm s-
maller than 3.08% under the NLOS transmission (LOC B),
whereas a detection rate higher than 97.89% and a false alar-
m smaller than 2.11% under the LOS transmission (LOC C).
Moreover, as the distance between the receiver and the trans-
mitter increases, the accuracy of both methods improves.

4.2. TRIEDS with Intentional Human Movements

To investigate on the effects that the human movements have
on the performance of TRIEDS, we conduct experiments with
none, one and two individuals keep walking back and forth in
the shaded area as shown in Figure 3b. Meanwhile, the trans-
mitter is put on the purple dot and the receiver is on the green
dot in the shaded area, monitoring the states of two adjacent
doors labeled as “D1” and “D2”.

Interference caused by the human movements changes the
multipath propagation environment and brings in the varia-
tions in the TR spatial-temporal resonances during the moni-
toring process of TRIEDS. To combat this, we adopt the ma-

Experiment No HM One HM Two HM
w/o SMG 97.75% 87.25% 79.58 %
with SMG 98.07% 94.37% 88.33 %

Table 2: Accuracy comparison of TRIEDS under human
movements with or without smoothing (SMG).

jority vote method combined with a sliding window to smooth
the detection results over time. Supposing we have the previ-
ous K − 1 outputs S∗k , k = t − K + 1, · · · , t − 1 and the
current result S∗t , then the decision for time stamp t is made
by majority vote over all S∗k , k = t−K + 1, · · · , t.

In Table 2, we compare the average accuracy over all s-
tates for TRIEDS with or without the smoothing algorithm.
Here, the length of the sliding window is K = 20. First of
all, the accuracy of TRIEDS reduces as the number of in-
dividuals performing persistent movements near the targeted
objects, the transmitter or the receiver increases. The reason
is that the channel multipath profiles vary more severely when
the number of present individuals increases, considering the
distortions and interference brought by human body. Altered
multipath profiles lead to a degradation in detection accura-
cy of TRIEDS due to the mismatch to the training database.
Moreover, the adopted smoothing algorithm improves the ro-
bustness of TRIEDS to human movements and enhances the
accuracy by 7% to 9% compared with that of the case with-
out smoothing. Meanwhile, during the experiments, we also
find that the most vulnerable state is when all doors are open
where human movements TRIEDS is more likely to yield a
false alarm. The reason is that as human moves close to the
door location, the human body, viewed as an obstacle at the
door location, is similar to a close wooden door.

5. CONCLUSIONS

In this paper, we proposed a novel wireless indoor events
detection system, TRIEDS, by leveraging the TR technique
to capture changes in the indoor multipath environment.
TRIEDS enables low-complexity devices with the single an-
tenna, operating in the ISM band to detect indoor events even
through the walls. TRIEDS utilizes the TR spatial-temporal
resonances to capture the changes in the EM propagation
environment and naturally compresses the high-dimensional
features, which supports simple and fast detection algorithms.
Moreover, we built a real prototype to validate the feasibili-
ty and to evaluate the performance of the proposed system.
According to the experimental results for detecting the s-
tates of wooden doors in dynamic environments, TRIEDS
can achieve a detection rate over 96.92% while maintaining
a false alarm rate smaller than 3.08% under both LOS and
NLOS transmissions.
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and Frédo Durand, “Capturing the Human Figure
Through a Wall,” ACM Transactions on Graphics, vol.
34, no. 6, pp. 1–13, Oct. 2015.

[14] B. Bogert, “Demonstration of delay distortion correc-
tion by time-reversal techniques,” IRE Transactions on
Communications Systems, vol. 5, no. 3, pp. 2–7, Decem-
ber 1957.

[15] Mathias Fink, Claire Prada, Francois Wu, and Didier
Cassereau, “Self Focusing in Inhomogeneous Media
with Time Reversal Acoustic Mirrors,” IEEE Ultrason-
ics Symposium Proceedings, pp. 681–686, 1989.

[16] Yan Chen, Feng Han, Yu-Han Yang, Hang Ma, Y-
i Han, Chunxiao Jiang, Hung-Quoc Lai, David Claffey,
Zoltan Safar, and KJ Ray Liu, “Time-reversal Wireless
Paradigm for Green Internet of Things: An Overview,”
IEEE Internet of Things Journal, vol. 1, no. 1, pp. 81–
98, 2014.

[17] Zhung-Han Wu, Yi Han, Yan Chen, and K.J.R. Liu,
“A Time-Reversal Paradigm for Indoor Positioning Sys-
tem,” IEEE Transactions on Vehicular Technology, vol.
64, no. 4, pp. 1331–1339, April 2015.

[18] Chen Chen, Yan Chen, K. J. Ray Liu, Yi Han, and
Hung-Quoc Lai, “High-accuracy indoor localization:
A wifi-based approach,” the 41st IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016.

[19] Beibei Wang, Yongle Wu, Feng Han, Yu-Han Yang, and
KJ Liu, “Green Wireless Communications: A Time-
reversal Paradigm,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 8, pp. 1698–1710, 2011.

5994


