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ABSTRACT

In this paper we have proposed clock error mitigation from the
measurements in the scheduled based self localization system.
We propose measurement model with clock errors while fol-
lowing a scheduled transmission among anchor nodes. Fur-
ther, RLS algorithm is proposed to estimate clock error and to
calibrate measurements of self localizing node against relative
clock errors of anchor nodes. A full-scale experimental val-
idation is provided based on commercial off-the-shelf UWB
radios under IEEE-standardized protocols.

Index Terms— self-localization, indoor positioning, UWB

1. INTRODUCTION

In the last decade, the interest for positioning systems have
skyrocketed, both in commercial and industrial environments.
In this field, Ultra-Wide Band devices seems promising since
it has potential for decimeter precision [1, 2].

Schedule based positioning has been proposed and anal-
ysed in [3, 4, 5, 6], as a method allowing asynchronous nodes
in a network to perform cooperative localization without com-
munication overhead. In scheduled based positioning, every
node takes turn to broadcast its messages as per a schedule.
The schedule is a-priori decided. In [3] and [4], schedule
based positioning is used for distributed position estimation
when every node can estimate position of every other node in
the network including itself. In [5] and [6], schedule based
positioning is used for self localization of a node while only
receiving scheduled transmissions from anchor nodes. In both
the contexts of distributed positioning and self localization,
anchor positions are assumed to be known. Moreover, the
system can be implemented with low-cost devices. In addi-
tion, no wired or wireless synchronization is needed.

The idea of schedule based positioning relies on generat-
ing analog delays δ at every node. Whereas, in practice these
delays are generated using digital discrete clocks. The clocks
also suffer nonidealities such as clock skew and clock jitter
[7]. In this paper we have suggested and demonstrated imple-
mentation of schedule based self localization scheme using
commercial wireless ranging devices. The device used is the
Decawave devices [8, 9],working under IEEE standards.Thus,

easy adoption of the technology is provided. We have pro-
posed practical measurement model for schedule based mea-
surements. Thereupon we have proposed calibration scheme
to minimise clock errors from the measurements. Time dif-
ference of arrival (TDOA) measurements at self localizing
node in an experimental setup is collected. To the authors
knowledge, there are no other experimental validation avail-
able of passive scalable and asynchronous ultra wide band
localization system. The collected measurements are cali-
brated to minimise clock errors. The calibrated measurements
are then used to infer position of the self localizing node.
Further, performance of position estimation using measure-
ments is compared with simulated performance and Cramér-
Rao lower bound on position estimation.

2. MEASUREMENTS MODEL

2.1. Two Way Ranging(TWR) and Passive Listening

Figure 1 is the timing diagram of node 1 and node 2 partici-
pating in a two-way ranging measurement while node 3 is do-
ing TDOA measurements of the signal it receives from node
1 and node 2. As shown in the figure, node 1 sends a PING
and node 2 replies with a RESPOND after a delay of δB. Again
node 1 transmits after a delay δA. The distance between node
1 and node 2 is ρ12. node 1 and node 2 measure the round
trip times (RTT) y1, and y2. Node 3 in the figure is the pas-
sive listening node and does measurements y12

3 and y21
3 . Node
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Fig. 1: Node 1, node 2 and node 3 two way ranging diagram
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1 and node 2 introduce delay δ, which is a known parameter
in the network, by counting number of periods of their re-
spective clocks C1 and C2. Clocks at node 1 and node 2 are
modelled as C1 = (1 + ϑ1)t and C2 = (1 + ϑ2)t. Where ϑ1

and ϑ2 are respective clock skews. t is the absolute reference
time. The delays at node 1 and node 2 are often imprecise due
to hardware constraints. Thus, the actual delays are given as
∆1 = δ+ ε1 and ∆2 = δ+ ε2. ε1 and ε2 are random errors due
to limited resolution in generating time delay δ. From Fig. 1
RTT measurement at node 1 is

y1 = 2
ρ12

c
(1 + ϑ1) + ∆2(1 + ϑ1− ϑ2) + η, (1)

where η is AWGN with variance σ2 = 2σ2
j + 2σ2

c . σ2
j is the

variance of the AWGN jitter noise of the clocks C1 and C2 and
σ2
c is the variance of the AWGN channel noise [7]. The term

2ρ12ϑ1 is the error in measuring propagation delay by C1 due to
its clock skew ϑ1. The delay ∆2 generated by C2 and measured
by node 1 as a part of RTT measurement is ∆2(1 + ϑ1 − ϑ2).
RTT measurements by node 2 can be written as above.

We see from Fig. 1 that the node 3 listens to the exchanges
between node 1 and node 2. Node 3 makes measurements y12

3

and y21
3 . Measurement models at node 3 are,

y12
3 =

1

c
(ρ12 + ρ23 − ρ13) (1 + ϑ3) + ∆2(1 + ϑ3− ϑ2) + η12, (2)

y21
3 =

1

c
(ρ12 + ρ13 − ρ23) (1 + ϑ3) + ∆1(1 + ϑ3− ϑ1) + η21. (3)

η12 and η21 are AWGN noise sources in measurements with
variance σ2 = 2σ2

j + 2σ2
c .

The sum of above two measurements can be written as

y12
3 + y21

3 = 2
ρ12

c
(1 + ϑ3) + δ(2 + 2ϑ3− ϑ1− ϑ2) +

ε1(1 + ϑ3− ϑ1) + ε2(1 + ϑ3− ϑ2) + η12 + η21 (4)

From (4), the listener node 3 can estimate ρ12 as long as
effects due to clock error parameters (ϑ1, ϑ2, ϑ3, ε1, ε2) remain
sufficiently small. As can be seen from (4), the biggest error
term is the skew error, δ(2ϑ3−ϑ1−ϑ2) which increases linearly
with δ as is evident from experimental observation in Fig. 2.

2.2. Measurement model for schedule based localization

In this sub-section, we extend the measurement model for self
localization presented in [5]. We introduce clock error terms
discussed above as they show up in practical implementation
of schedule based self-localization setup. Consider a network
of N anchor nodes with a self localizing node ’L’ with co-
ordinates x = [(x1, y1), (x2, y2)..(xN , yN ), (xL, yL)]T. The
vector of ranges, ρL = [ρ12, ..., ρN-1,N, ρL1, ..., ρLN]T.The relative
skew between L and a node i, ϑLi = ϑL − ϑi.

For a specific schedule of M measurements, we can com-
pute the matrix S, of size M × N(N−1)

2 +N which maps the
time of flights to the measurements. A single TDOA mea-
surement at the listener node L between successive reception

Fig. 2: Experimental behaviour of the skew error in TWR for
a 1 m distance with δ varying between 3 and 20 ms.

of signals from node i and node j follows (2). The resulting
row in S being

Sij
L = [0, ..., 1︸︷︷︸

ρij

, 0, ..., −1︸︷︷︸
ρiL

, 0, ..., 1︸︷︷︸
ρjL

, 0, ..., 0]. (5)

Then based on (2) considering that all the noise sources η are
AWGN, independent and identically distributed the measure-
ment vector at L is

yL =
1

c
SρL +D+

1

c
ϑLSρL +RD+(I+R)ε+η ∈ RM .

(6)
Where, RD = Diag(ϑLi)1δ is the vector of skew errors or-
dered as per the schedule, I the identity matrix of the mea-
surement space, η the noise vector with covariance matrix
Q = Diag(σ2) and ε is the vector of sending delay errors ε.

Consider the schedule between 3 anchors used for posi-
tioning in [3]: [1, 2, 3, 2, 1, 3], where M = 5, ρL =
[ρ12, ρ13, ρ23, ρL1, ρL2, ρL3]

T, then S ∈ R5×6, D = δ1 ,RD =
δ[ϑL2, ϑL3, ϑL2, ϑL1, ϑL3]

T, and ε = [ε1, ε2, ε3, ε4, ε5]T.

3. CLOCK ERROR MITIGATION

Clock errors in in the measurement can be reduced by two
ways. The error ε can be minimised by transmitting actual
delays ∆. In addition, relative skews of node L and anchor
nodes, R, can be estimated from scheduled measurements.

3.1. Error mitigation by transmission of the actual delay

To mitigate the clock error ε, the transmitting node in the
schedule transmits ∆ in the subsequent transmission. The
∆ is transmitted as payload in the broadcast message by the
transmitting node. This leads to an addition of a few bytes
in the total message frame, but provides the listener node the
exact delay generated at the sender. The direct retrieval of ∆
reduces the effect of random error ε. The influence of this
dynamic retrieval can be seen in Fig. 3, in the presented mea-
surement set, this retrieval leads to a reduction of the standard
deviation from 3.3235ns to 0.30666ns.
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(a) Measurements without dy-
namic retrieval of the delay

(b) Measurements with dynamic
retrieval of the delay

Fig. 3: Experimental study of the impact of dynamic retrieval
of the observed delay

(a) RLS applied on the measure-
ments without dynamic retrieval
of the observed delay

(b) RLS applied on the measure-
ments with dynamic retrieval of
the observed delay

Fig. 4: RLS estimation of the relative clock skew on experi-
mental data

3.2. Inline calibration in Scheduled based self-localization

As shown in the TWR case, the biggest error term in a
scheduled based self localisation measurement is the skew
error RD that appears as a bias. Considering a mini-
mal length valid schedule, S is then full rank and S ∈
RN(N−1)/2+N−1×(N−1)/2+N [6], and by construction u =
[012, · · · , 0N-1N, 1L1, · · · , 1LN]T ∈ ker S, hence as dim(kerS) =
1, ker S = span(u) leading all the distances between
the anchors to be identifiable in our measurements. Let
S+ be the Moore-Penrose pseudo inverse of S and Π =(

IN(N−1)
2

0

0 0

)
,we have ΠS+S = Π, then under our

previous assumptions

Π S+yL '
1

c


ρ12

· · ·
ρN-1N

0

+ Π S+ (I + R) D. (7)

As range(Π) is isomorphic to R
N(N−1)

2 we can then resolve
in R

N(N−1)
2 the N unknown ϑL−ϑSender of R, as long as the dis-

tance between the anchors and D are known. As we are con-
sidering a schedule composed of anchors using known delays
these conditions are fulfilled and inline calibration is possible.

We propose a recursive estimator which updates skew er-
ror estimates with every new measurement. The framework
is based on recursive least squares (RLS) estimation [10].

Let θ = [ϑL1, · · · , ϑLN]
T be the vector of the relative skews,

then (7) can be rewritten

ΠS+RD = Π
(
S+ · (yL − D)− ρL

)
= GT θ, (8)

where G is a matrix that maps the relative skews θ into the
vector ΠS+RD. Both G, S+, D and ρL can be precom-
puted as they only depend on anchor position and the sched-
ule. By ignoring the last N dimensions, we can estimate θ by
RLS(with a unit forgetting factor), see Algorithm 1.

Algorithm 1 Recursive Least Square estimator

Input: previous estimate θ̂n, previous inverse covariance es-
timation P−1

n , system matrix G, measurement update dn
yn+1 = GT · θ̂n
K = P−1

n G∗ [I + G∗P−1
n G

]−1

θ̂n+1 = θ̂n + K (dn − yn+1)
P−1
n+1 = P−1

n + KGTP−1
n

Output: P−1
n+1,θ̂n+1

P−1
n+1 and K can be computed offline, resulting in a

quadratic cost in the number of anchors for each iteration.
Fig. 4 shows the evolution of the estimated relative skews

for two types of data, the first one using raw data, the sec-
ond one using the same data with variance reduced by using
information on the delay error. It is clear that the variance
reduction induces a faster convergence of the RLS. Both esti-
mations converging towards the same values.

Clock error mitigation from the measurements reduces the
measurement model in (6) to the approximate model

yL =
1

c
S ρL + D + w, (9)

where w ∼ N (0, σ2I). To perform localization we aim to
maximize p(x, σ2|yL), this is equivalent to minimize [5],

V(x) =
1

2
ln ‖ yL −

1

c
S g(x)−D ‖2 +

β

2
‖ µ− x ‖2Pr−1 .

(10)
Where g is the function that maps the positions onto the

distances, β = 1/(M + 2). The vector µ = [µ1, · · · , µN , µL]
is mean of the prior on node positions. Pr−1is the inverse
of covariance matrix on node positions. The position is esti-
mated through the iterative MAP estimator proposed in [5].
The Hybrid Cramér Rao Bound (HCRB) can then be com-
puted as C � J−1 where J = JD + JP [11]. JD being the
expected Fisher information of the parameters [5].

JDi,j =
1

c2σ2

∂gT

∂xi
STS

∂g

∂xj
+

M

2σ4

∂σ

∂xi

∂σ

∂xj
. (11)
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JP is the inverse matrix of prior covariances Pr−1.

4. EXPERIMENTAL STUDY ON SELF
LOCALIZATION

In order to test the quality of the proposed model and cali-
bration method, we set up an indoor positioning experiment
(See Fig. 5). In this experiment we have 3 anchors sepa-
rated by approximately 10 meters participating in a schedule
with a 3 ms delay (δ) and a self localizing listener node us-
ing the MAP estimator. In the presented scenario, the 4 nodes
are DW1000 radios commercialised by Decawave Ltd. The
messages used follow IEEE standard 802.15.04-2011 with 18
coded octet and a header 1024 symbols, a pulse repetition
frequency (PRF) of 16 MHz. The channel used has a 3993.6
MHz centre frequency and a bandwidth of 1331.2 MHz. The
data have been gathered in line of sight (LOS) conditions. For
outlier rejection, based on that the distances should not exceed
20 m in our scenario, a whole schedule is discarded as soon as
one measurement of |yL −∆| exceeds 100 ns. The schedule
used is [1, 2, 3, 2, 1, 3]. Our specific implementation of sched-
uled based positioning allows one more measurement as the
last node also waits δ after reception of the last message. This
measurement leads the estimation to be based on a schedule
of [1, 2, 3, 2, 1, 3, 1].

Fig. 5: Experimental setup in Reactorhallen R1, where 1, 2
and 3 are anchors and L the listener node

Fig. 6 presents the results for self-localization in the Fig. 5
setup. The measurements are collected at two different loca-
tions of node L. The collected measurements are further used
for self-localization using the MAP estimator discussed pre-
viously. Fig. 6 shows the following error ellipses with 99%
confidence interval

1. Error ellipse for HCRB. As seen its the smallest ellipse
with lower bound on position error.

2. Error ellipse simulation setup. The mean of the error
ellipse is within 2 centimeters of the true node position.

3. Error ellipse for position estimation by MAP estimator
with the measurements obtained by error correction af-

ter direct retrieval of real delays. Mean of the estimated
position lies away from true positions by a distance of
27 and 46 centimeters.

4. Error ellipse for position estimation by MAP estimator
with the measurements obtained by inline calibrated
measurements where clock errors have been mini-
mized. Mean of the estimator lies away from true
position by 9 and 6 centimeters.

As the measurements without any clock error mitigation has
high variance and bias, the estimator does not converge to
something realistic, hence results are not shown for this case.

Fig. 6: Experimental results of passive localization for 2 dif-
ferent positions {1.92, 2.42} and {−1.53, 4.73}, the simu-
lated data and hybrid Cramér Rao Bound with zero mean
Gaussian noise of standard deviation σ = 3 ns.

The results after removing clock errors from the measure-
ments are close to simulation results. However, many other
unaccounted and practical issues such as presence of outliers
in the original measurements and some discrepancy between
simulation parameters and corresponding values in experi-
mental setup results in slight difference in performances.

5. CONCLUSION

We have proposed a practical way to implement schedule
based self-localization. We have arrived at a measurement
model accounting for real world errors in making the self lo-
calization work. The clock errors dominate the non-idealities
in the measurements, hence efforts were put in to suggest
different ways of mitigating clock errors. The primary sug-
gestions for mitigating clock errors while experimenting with
Decawave devices are transmission of delays along with mes-
sage by the transmitter, and estimating relative clock skews
of nodes in the context of schedule based self localization.
The results validate suggested methods while showing mean
of estimate within 10 centimeters of true position.
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