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ABSTRACT

In this paper, we consider the problem of event prediction
with multi-variate time series data consisting of heterogeneous
(continuous and categorical) variables. The complex depen-
dencies between the variables combined with asynchronicity
and sparsity of the data makes the event prediction problem
particularly challenging. Most state-of-art approaches address
this either by designing hand-engineered features or breaking
up the problem over homogeneous variates. In this work, we
formulate the (rare) event prediction task as a classification
problem with a novel asymmetric loss function and propose
an end-to-end deep learning algorithm over symbolic represen-
tations of time-series. Symbolic representations are fed into
an embedding layer and a Long Short Term Memory Neural
Network (LSTM) layer which are trained to learn discrimina-
tive features. We also propose a simple sequence chopping
technique to speed-up the training of LSTM for long tempo-
ral sequences. Experiments on real-world industrial datasets
demonstrate the effectiveness of the proposed approach.

Index Terms— Event Prediction, Feature Discovery, Re-
current Networks

1. INTRODUCTION

Collection of raw time series data and system logs has become
quite prevalent recently owing to increased connectivity of
physical systems to the Internet. Such datasets enable appli-
cations such as predictive maintenance, service optimizations
and efficiency improvements for physical assets. At the same
time, these datasets also pose interesting research challenges
such as complex dependencies and heterogeneous nature of
variables, non-uniform sampling of variables, sparsity, etc
which further complicates the process of feature extraction for
data mining tasks.

Feature extraction from time-series data for classification
has been long studied [1]. For example, well-known Crest
factor [2] and Kurtosis method [3] extract statistical measures
of the amplitude of time-series sensory data. Other popular
algorithms include feature extraction using frequency domain
methods, such as power spectral density [4], or time-frequency
domain such as wavelet coefficients [5]. More recent methods
include wavelet synchrony [6], symbolic dynamic filtering [7,

8] and sparse coding [9, 8]. On the other hand, summary
statistics such as count, occurrence rate, and duration have
been used as features for event data [10].

These feature extraction algorithms are usually performed
as a pre-processing step before a classifier is trained on the
extracted features and thus are not guaranteed to be opti-
mally discriminative for the given classification task. Sev-
eral recent works have shown that better performance can be
achieved when a feature extraction algorithm is jointly trained
along with a classifier in an end-to-end fashion. For example,
in [11, 12], dictionaries are trained jointly with classifiers to ex-
tract discriminative sparse codes as feature. Recent successes
of deep learning methods [13] on extracting discriminative
features from raw data and achieving state-of-the-art perfor-
mance have boosted the effort for automatic feature discovery
in several domains including speech [14], image [15], and
text [16] data. In particular, it has been shown that recurrent
neural networks [17] and its variants such as LSTMs [18, 19]
are capable to capture long-term time-dependency between
input features and thus are well suited for feature discovery
from time-series data.

While neural networks have also been used for event clas-
sification, these efforts have been mostly focused on either
univariate signal [20] or uniformly sampled multi-variate time-
series data [6]. In this paper, the focus is on event prediction,
which is a more challenging task than event classification,
where the application data consists of multi-variate and hetero-
geneous time-series data. Furthermore, the time-series data
used here are not uniformly sampled. Followings are the main
contributions of the paper:

• We propose a deep learning based architecture for fault
prediction on multi-variate heterogeneous time-series
data. The proposed algorithm first symbolizes the con-
tinuous time-series and combine them with categorical
inputs to form words. The vocabulary representation
and recurrent network is then trained jointly to learn
discriminative features for the given prediction task.

• We propose to use a cost-sensitive formulation to trans-
form the prediction task into a classification task. In this
setting, false negatives on near future events are further
penalized than false negatives on remote events. The
proposed formulation also handles rare event prediction
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where distribution of positive and negative samples are
highly imbalanced.

• We show that the proposed algorithm achieves state-
of-the-art performance on two problems of hard disk
failure prediction and heating system fault prediction.

2. SYMBOLIZATION

Symbolization has been widely used as first step for feature
extraction providing a more compact representation of time-
series data. For example, symbolization is used in [8] to
construct probabilistic finite state automata and a measure on
the corresponding state transition matrix is used as final feature
which is fed into a classifier. However, this kind of designed
measures are extracted without explicitly optimizing for the
given discriminative task, and thus are only suboptimal. In this
work, we directly use the symbolized sequence as the input to a
recurrent model to learn discriminative features. Each word of
the symbolized sequence is a descriptor of a “pattern” at a time
step. Even though the process of generating symbols ignores
dependency among variables, we hypothesize that as long as
a dataset is large enough and representative patterns occur
frequently, a recurrent neural network model should be able to
capture the dependencies among the variables. Symbolization
for a discrete variable is trivial as the number of symbols is
equal to the number of available categories. For continuous
variables, this requires partitioning of data. The signal space
for each continuous variable, approximated by training set,
is partitioned into a finite number of cells that are labeled as
symbols. The number of splits for each variable are determined
by observing the corresponding marginal data distribution. The
locations of splits can be determined either by observation or
a clustering algorithm, or uniform partitioning. In this paper,
we use Jenks natural breaks algorithm for partitioning [21].

Figures 1 and 2 illustrate the symbolization procedure in
a simple example converting a synthetic 2 dimensional time
series {Z1, Z2} into a sequence of words. The histogram of
continuous variable Z1 contains two Gaussians and thus it is
partitioned into 2 splits, i.e. for any realization of this variable
in the time series, the value is replaced with symbol “a” if it
is less than 7, and with “b” otherwise. For discrete variable
Z2, assuming it has 5 categories Z2 ∈ {C1, C2, C3, C4, C5},
we assign symbol “a” to “C1”, symbol “b” to “C2”, and so on.
Following this procedure, each time step is represented by a
word which is formed by orderly connecting the symbol real-
izations of the variables. Thus, each time-series is represented
by a sequence of words.

3. PREDICTION ARCHITECTURE

3.1. Formulation of Prediction Problem
In this section, we formulate the event prediction problem.
Let X = {X1,X2, . . . ,Xm} be a sequence of observation
sets collected in m time steps, where Xi = {xi1, . . . ,xiNi}
represents ith input sequence consisting of Ni consecutive

measurements. As notation indicates, it is not assumed that
the number of observations within each time step is constant.
Let {e1, e2, . . . , em} be the corresponding sequence labels for
X , where ei ∈ {0, 1} encodes presence of an event within
the ith time step, i.e. ei = 1 indicates that a fault event is
observed within the period of time that input sequence Xi is
collected. We define target labels y = {y1, y2, . . . , ym} where
yi = 1 if an event is observed in the next K time-steps, i.e.∑j+K

j=i+1 ej > 0, and yi = 0 otherwise. In this formulation, K
indicates the prediction horizon and yi = 0 indicates that no
event is observed in the next K time-steps, refereed to as mon-
itor window in this paper. The prediction task is then defined
as predicting yi given input Xt and its corresponding past
measurements {Xt−1,Xt−2, . . . ,X1}. Using the prediction
labels y, the event prediction problem on time series data is
converted into a classic binary classification problem. Note
that although the proposed formulation can in theory utilize
all the past measurements for classification, we usually fix a
window size of m past measurements to limit computational
complexity. For instance, suppose that Xi’s are sensory data
measurements of a physical system collected at the ith day of
its operation and let K = 7 and m = 3. Then the classification
problem for Xi is to predict yi, i,e, whether an event is going
to be observed in the next coming week of the physical system
operation, given current and past three days of measurements.

3.2. Temporal Weighting Function

In rave event prediction tasks, the number of positive data
samples, i.e. data corresponding to occurrences of a target
event, is much fewer than the one of negatives. If not taken
care of, this class imbalance problem causes that the decision
boundary of a classifier to be dragged toward the data space
where negative samples are distributed, artificially increasing
the overall accuracy while resulting in low detection rate. This
is a classic problem in binary classification and it is a common
practice that larger misclassification cost are associated to
positive samples to address this issue [22]. However, simply
assigning identical larger weights to positive samples for our
prediction formulation cannot emphasize the importance of
temporal data close to a target event occurrence. We hypothesis
that the data collected closer to an event occurrence should
be more indicative of the upcoming error than data collected
much earlier. Therefore, we design the following weighting
function to deal with the temporal importance:

wt =

{ ∑K
j=1(K − j + 1)et+j if yt = 1

1 if yt = 0
(1)

This weighting function gives relatively smaller weights
to data far from event occurrences compared to those which
are closer. In addition to temporal importance emphasis, it
also deals with overlapping events. For example, suppose that
two errors are observed at time samples t + 1 and t + 3 and
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Fig. 1: Partitiong of continous variable Z1 based on its his-
togram.
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Fig. 2: Time Series symbolization.
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Fig. 3: Time-series prediction model. wi indicates the embedding vector for word i, and fi indicates the output of LSTM after
reading the i-th chunk of embedding vectors of words.

prediction horizon K is set to 5. Then input sample Xt is
within the monitor windows of both events and thus its weight
is set to higher value of wt = (5 − 1 + 1) + (5 − 3 + 1) =
8 as misclassification in this day may result in missing to
predict two events. By weighting data samples in this way, a
classifier is trained to adjust its decision boundary based on
the importance information.

The above weight definition deals with temporal impor-
tance information for event prediction. We also need to re-
adjust weights to address the discussed class imbalance issue.
After determining the weight using Eq. 1 for each training
sample, we re-normalize all weights such that the total sum of
weights of positive samples becomes equal to the total sum of
weights of negative samples.

3.3. Loss Function

The weighted cross entropy loss function is used as the opti-
mization criterion to find parameters for our model. For the
given input Xi with weight wi and target label yi, the loss
function is defined as :

l(yi, ŷi) = wi(yilogŷi + (1− yi)log(1− ŷi)) (2)

where ŷi is the predicted label.

3.4. Proposed network for event prediction

Figure 3 summarizes the model used for prediction. Similar
to use of recurrent models on a natural language processing
task, an embedding matrix is learned to map each word in the

vocabulary to a vector [23]. The embedding layer generates
a sequence of embedding vectors for the given sequence of
words. The generated vectors are then fed into an LSTM layer.
LSTM [18] has become a popular model for sequential data
with variable-length inputs. It is capable of capturing long
term dependency in data.

A simple trick is used to increase the use of GPU parallel
computing power during the training phase. For a given train-
ing time-series with T words, instead of sequentially feeding
entire samples to the network, time-series is first divided into
M sub-sequences of maximum length T

M where each of these
sub-sequences are processed independently and in-parallel. A
max-pooling layer is then used on these feature vectors to get
the final feature vector which represents the entire time-series.
The generated feature is fed into a feed-forward neural network
with sigmoid activation function to generate the predictions
for the binary classification task. We call the sequence divi-
sion technique as sequence chopping. Even though training
an LSTM with this technique sacrifices temporal dependency
longer than T

M time steps, we have observed that by selecting a
suitable chopping size, we can achieve competitive results and
at the same time significant speed-up of the training procedure.

In our model, the LSTM serves not only as a symbol repre-
sentation learner, but also a temporal feature extractor. On one
hand, it finds the vector representation in continuous vector
space for each word, which is a summary descriptor of het-
erogeneous data at a time step. On the other hand, given a
sequence of words, the output of LSTM is a temporal feature
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vector that describes the sequence and is used for classification.
The main idea of using a recurrent neural network’s is its uni-
versal approximation ability for open dynamical system [24]
to perform a joint learning of dynamics of the system and
representations which generate it at the same time.

4. RESULTS

4.1. Backblaze Reliability Dataset

Backblaze data center has released its hard drive datasets con-
taining daily snapshot S.M.A.R.T (Self-Monitoring, Analysis
and Reporting Technology) statistics for each operational hard
drive from 2013 to June 2016. The data of each hard drive are
recorded until it fails. In this paper, the 2015 subset of the data
on drive model “ST3000DM001” are used. As far as we know,
no other prediction algorithm has been published on this data
set and thus we have generated our own training and test split.
The data consists of several models of hard drives. There are
59, 340 hard drives out of which 586 of them, less than 1%,
had failed. The data of the following 7 columns of S.M.A.R.T
raw statistics are used: 5, 183, 184, 187, 188, 193, 197. These
columns corresponds to accumulative count values of differ-
ent monitored features. We also added absolute difference
between count values of consecutive days for each input col-
umn resulting in overall 14 columns. The data has missing
values which are imputed using linear interpolation. The task
is formulated to predict whether there is a failure in the next
K = 3 days given current and past 4 days data.

The dataset is randomly split into a training set (containing
486 positives) and a test set (containing 100 positives) using
hard disk serial number and without loosing the temporal in-
formation. Thus training and test set do not have any common
hard disk. Then the data are symbolized and converted into
sequences of words. The vocabulary is constructed using all
words that have been repeated more than once. The training
words with frequency of one are all mapped to a single out-
of-vocabulary (OOV) word. The resulted vocabulary consists
of 353 words, including the OOV. The size of the embedding
layer and LSTM layer are found using cross validation on
a small validation set and are set to 16 and 8, respectively.
For comparison purpose, we also provided the results using
logistic regression classification (LR) and LSTM classifiers
(without symbolization) on normalized raw data. For LR, the
past from five days are concatenated to form the feature vector.
All reported models are evaluated using both with and without
proposed temporal weighting. The models are trained using
ADAM algorithm [25] with default learning rate of 0.001. We
reported the balanced accuracy, arithmetic mean of the true
positive and true negative rates, the area under curve (AUC) of
ROC as performance metrics. The balanced accuracy numbers
are generated by picking a threshold on ROC that maximizes
true prediction while maintaining a false positive rate of maxi-
mum 0.05. Tabel 1 summarizes the performance on test data
set. It is seen that the proposed cost-sensitive LSTM with
symbolization achieves the best performance.

Table 1: Performance comparison of the studied event predic-
tion models on Backblaze Reliability dataset. The performance
is reported for the logistic regression classifier (LR), LSTM
without symbolization (LSTM), and the proposed LSTM on
symbolized inputs (Sym. + LSTM). For all the methods, per-
formance is reported with (indicated by W.) or without the
proposed temporal weighting.

Models Balanced Accuracy AUC of ROC

LR 0.799 0.679
LSTM 0.802 0.835
Sym. + LSTM 0.834 0.812
LR + W. 0.85 0.859
LSTM + W. 0.83 0.864
Sym. + LSTM + W. 0.852 0.874

Table 2: Performance comparison of our developed model
and the model based on hand-designed features on Thermo-
technology dataset.

Models Balance Accuracy AUC of ROC

LSTM + W 0.711 0.801
LSTM + Sym + W 0.775 0.812

4.2. Thermo-technology Dataset
We also applied our method on an internal large dataset con-
taining sensor information from thermo-technology heating
systems. This dataset contains 132, 755 time-series of 20 vari-
ables where each time-series is data collected within one day.
Nine of the variables are continuous and the remaining 11 vari-
ables are categorical. The task is to predict whether a heating
system will have a failure in coming week. The dataset is
highly imbalanced, where more than 99% of the data have no
fault in the next seven days. After symbolizing the training
data, those words that have relative frequency of less than 1%
are considered as OOV words. The embedding dimension and
size of hidden variables are chosen as 20 and 15, respectively
using cross-validation on a validation set. A fully connected
layer of dimension 50 after LSTM layer which is followed by
the final classification layer. The performance of our model
trained on raw data with a similar LSTM architecture which
is trained on 119 hand-engineered features are compared in
Table 2. The results are reported on test data. As seen, our
methods results in competitive performance without the need
for the costly process of hand-designing features.

5. CONCLUSIONS

We proposed a recurrent architecture on symbolized input se-
quence generated from heterogeneous multi-variate time-series
data for event prediction. We further proposed a weighting
formulation to model temporal importance of the samples and
showed that the proposed algorithm achieves the state-of-the-
art performance on two real-world datasets.
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