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ABSTRACT

Heterogeneous sensor data fusion is a challenging field that has gath-
ered significant interest in recent years. In this paper, we propose
a neural network-based multimodal data fusion framework named
deep multimodal encoder (DME). Through our new objective func-
tion, both the intra- and inter-modal correlations of multimodal sen-
sor data can be better exploited for recovering the missing values,
and the shared representation learned can be used directly for predic-
tion tasks. In experiments with real-world sensor data, DME shows
remarkable ability for missing data imputation and new modality
prediction. Compared with traditional algorithms such as kNN and
Sparse-PCA, DME is more expressive, robust, and scalable to large
datasets.

Index Terms— Multimodal data fusion, heterogeneous sensor
data, missing data imputation, deep learning

1. INTRODUCTION

Multimodal data fusion refers to the statistical and machine-learning
problem of combining data from different kinds of sensors to en-
able better inference, prediction and decision making [1–4]. Nowa-
days, wireless sensor networks are widely deployed around many
domains and the sensor data collected can be used for many tasks.
For instance, smart cities can make use of a variety of signals from
sensors, cameras and even social media to monitor the health of the
urban infrastructures and allocate resources more efficiently. Sensor
data is also helpful in many other scenarios such as monitoring en-
vironmental changes, detecting infrastructural faults and improving
physiological well-being [5–7].

Although sensor data is easily available, it is often incomplete
due to low battery, transmission loss or faulty sensors. This incom-
pleteness makes sensor data fusion a difficult task, degrading the
accuracy of decision making and prediction tasks [8]. Traditional al-
gorithms such as K-nearest neighbors (kNN) [9] and sophisticated
dimensionality reduction techniques such as sparse-PCA [10] are
widely used in many applications for missing data imputation and
classification. kNN adapts local linear computations and predicts
the missing data with the mean value, while sparse-PCA discovers a
more reasonable representation by extracting the sparse structure of
data. Both of them employ linear representations of the original data.
Recently, the sparse auto-encoder was used to learn more expressive
non-linear representations [11]which resulted in better performance.
However, all of these methods only consider intra-modal correlations
and not the inter-modal dependencies, which should be exploited to
enhance fusion performance of multimodal datasets [12, 13].

In this paper, we propose the deep multimodal encoder (DME)
framework based on neural network and deep learning techniques for
missing data imputation and decision-making in multimodal large-
scale sensor networks. Compared with kNN and Sparse-PCA, the

DME is more expressive and can learn richer features because of
the nonlinear activation functions. To deal with incomplete training
data, we incorporate a novel learning objective function that em-
braces missing values and enables DME to capture latent features in
the readings. To take advantage of multimodal data, the DME per-
forms a two-stage training procedure to learn a shared representation
that captures both the intra- and inter-modal correlations. Because
the compressed shared representation learned by the neural network
comes from a continuous transformation that preserves salient sta-
tistical properties of the raw data, new modalities may be predicted
directly from the code without decompressing it.

We conduct experiments with real-world agricultural sensor
data; namely, we have a large number of humidity (%), illuminance
(lux) and temperature (◦C) readings from multiple sensors on a high-
tech farm. The results show that DME outperforms many traditional
methods such as kNN, sparse-PCA and single-layer auto-encoders
in missing data imputation and new modality prediction. Its ability
to impute missing data degrades only slightly even when half the
readings are dropped. The DME also reconstructs temperature from
humidity and illuminance with an RMSE of 7◦C, directly from a
highly compressed (2.1%) shared representation that was learned
from incomplete (80% missing) data.

The rest of the paper is structured as follows. We formulate the
problem in Section 2. In Section 3, the DME framework is defined
mathematically. The algorithms are evaluated in Section 4, and we
conclude in Section 5.

2. PROBLEM FORMULATION

In this section, we provide the general idea behind missing data im-
putation in sensor datasets. For notational convenience, we use bold
uppercase, bold lowercase and regular letter for matrices, vectors
and scalars, respectively. A> and a> are matrix transpose and vec-
tor transpose,A ·B denotes the element-wise product,AB denotes
the matrix product, and ⊗ denotes the Kronecker product.

Suppose we have k data modality. For modality x, Xc =
[x(1) x(2) . . .x(N)]> ∈ RN×T [14] denotes the ground truth envi-
ronmental matrix, where each row x(i) ∈ RT consists of T sensor
readings coming from distinct sensors or time slots. The N samples
x(1) x(2) . . .x(N) are then assumed to be independently and iden-
tically distributed. The actual incomplete environmental matrix is
X =Xc ·Sx, where Sx is the indicator matrix and each entry sxn,t

is defined as

sxn,t =

{
1, if xn,t is observed
0, if xn,t is missing

Suppose we fill the missing values in X to get X̂ . Our final goal is
to minimize the deviation between X̂ andXc:

min‖(X̂ −Xc) · (1− Sx)‖2 (1)
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Fig. 1: Different neural network models for missing data imputation

However,Xc is not available. Hence, we change the objective func-
tion to:

min‖(X̂ −X) · Sx‖2 (2)

where we only include the observed values [8] . The assumption here
is that as long as we can reconstruct the observed values accurately,
we can capture the statistical features of the sensor data, making
values filled in X̂ reasonable approximations of the ground truth.
Here we only consider one modality as an example. The multimodal
case will be studied more carefully in Section 3.

In the experiments, we use the root-mean-square error (RMSE)
as the metric for performance. The RMSE error e is defined as

ex :=

√
‖(X̂ −Xc) · (1− Sx)‖2

‖1− Sx‖ (3)

3. METHODOLOGY

In this section we will describe our DME model in detail. DME aims
to capture both the intra- and inter-modal correlations for missing
data imputation. It is a specific deep learning architecture of auto-
encoders along with a novel objective function.

3.1. DME Framework

The DME framework uses auto-encoder for greedy layer-wise train-
ing as illustrated in Fig.1.(c) [15, 16]. An auto-encoder is a 3-layer
neural network, consisting of T input visible units, H hidden units,
and T output units, for learning representations from data. It takes
N training samples, X = [x(1) x(2) . . .x(N)]>, where x(i) ∈
RT , as input and learns parameters {W (1),W (2), b(1), b(2)} ∈
{RT×H ,RH×T ,RT ,RH} such thath(i) = a(2,i) = f1(x

(i)W (1)+

b(1)) and x̂(i) = a(3,i) = f2(a
(2,i)W (2) + b(2)) ≈ x(i) for non-

linear activations f1, f2.
Suppose we have two modalities with incomplete environmen-

tal matrices X and Y , respectively. The key idea is to learn the
intra-modal correlations of each modality individually in the first
hidden layer before extracting the inter-modal correlations in the sec-
ond hidden layer. Two traditional auto-encoder architectures, Uni-
modal auto-encoder (UAE) and Concatenate auto-encoder (CAE),
are showed in Fig.1.(a) and Fig.1.(b), respectively. UAE considers
different modalities separately, learning only the intra-modal corre-
lations. CAE incorporates inter-modal correlations, however, it si-

multaneously learns the intra- and inter-modal correlations in one
layer, which prevents either of them from being learned accurately
because of their vastly different statistical properties.

3.2. Missing Data Imputation

In this subsection, we describe how DME adapts to the inherent in-
completeness of wireless sensor datasets. Through a new loss func-
tion in both the intra- and inter-modal learning, the missing values
can be filled with the values predicted by feed-forwarding the DME.

3.2.1. Intra-modal Learning

Given two incomplete input datasets X ∈ RN×Tx and Y ∈
RN×Ty , where N is the number of samples and Tx, Ty are re-
spective sample dimensions, the proposed reconstruction loss of
inputX is

J̃(W,b) =
1

2
‖ 1

1N ⊗ θx · (X̂ −X) · Sx‖2 (4)

where 1N is an N dimension column vector [1, 1, ...1]> and X̂ is
the output of the auto-encoder. Instead of simply normalizing the
loss function by the scalar 1

N
in traditional auto-encoder [15], we

devise a new normalizing vector θx ∈ RTx which is defined as

θxt =

N∑
n=1

sxn,t , for t ∈ 1, 2, ...Tx (5)

We can regard each entry θxt as the number of observed samples in
modality x of certain dimension t. The intuition is that dimensions
with different number of missing entries should be weighted differ-
ently in the objective function.

To learn a better representation, we also add a novel sparsity
constraint. Suppose the activation in hidden layer with Hx units
is ax = f(XW + b), we denotes the mean activation as ρ̂x ∈
RTx×Hx , which is mathematically defined as

ρ̂x = [(ax)>Sx · 1

1Hx ⊗ θx ]
> (6)

and the new sparsity penalty term is redefined as

βx

Tx
‖KL(ρ̂x‖ρx)‖1=

βx

Tx

Hx,Tx∑
h=1,t=1

KL(ρ̂xh,t‖ρx) (7)
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Table 1: RMSE Humidity & Temperature

Humidity Temperature
Miss rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
KNN 8.31 14.56 20.98 27.90 35.41 43.56 52.36 61.8 2.45 4.66 7.12 9.81 12.71 15.83 19.13 22.70
S-PCA 15.45 17.88 19.09 21.79 26.62 33.66 42.97 54.40 6.09 7.28 7.88 8.67 10.08 12.49 15.90 19.96
UAE 5.09 5.98 6.79 7.73 8.13 9.00 10.07 11.06 2.03 2.32 2.48 2.71 2.95 3.10 3.27 3.69
CAE 4.64 5.98 6.40 7.36 8.05 8.87 9.75 11.07 1.73 2.07 2.32 2.52 2.78 2.93 3.28 3.81
DME 4.64 5.79 6.37 7.15 7.85 8.62 9.50 10.69 1.73 2.04 2.29 2.45 2.68 2.93 3.14 3.65

Table 2: RMSE Humidity & Illuminance

Humidity Illuminance
Miss rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
KNN 8.31 14.56 20.98 27.90 35.41 43.56 52.36 61.85 290.63 515.26 762.50 1043.95 1315.64 1604.82 1887.74 2169.86
S-PCA 15.45 17.88 19.09 21.79 26.62 33.66 42.97 54.40 389.38 614.82 870.16 1081.57 1312.71 1540.43 1797.90 2069.87
UAE 5.29 5.98 6.78 7.62 8.01 8.96 10.04 11.13 683.01 715.33 753.04 793.97 833.18 890.74 959.53 1022.86
CAE 5.24 5.88 6.49 7.11 7.88 8.96 9.53 10.81 624.06 679.22 727.41 768.66 806.65 891.63 972.08 1095.98
DME 4.83 5.73 6.16 7.15 7.45 8.30 9.31 10.61 615.17 651.43 696.10 739.20 811.31 863.50 955.17 1027.21

where βx, ρx is the sparse weight and predefined sparsity for the
auto-encoder of modalityX , respectively, and ‖·‖1 is the `-1 norm.
The idea here is similar to the reconstruction loss, i.e., we only en-
able the entries which are not missing in original input to affect spar-
sity in the hidden units.

Together with the unchanged decay weight regularization term,
the new objective function for modality x is given by

minLx(X) = ‖ 1

1N ⊗ θx · (X̂ −X) · Sx‖2+λx‖W x‖2

+
βx

Tx

Hx,Tx∑
h=1,t=1

KL(ρ̂xh,t‖ρx)
(8)

whereW x is the weight in this intra-modal auto-encoder for modal-
ity x. In the multimodal case, we learn multiple auto-encoders for
each modality individually. For instance, the final objective function
for a two-modality case is defined as

minLxy(X,Y ) = Lx(X) + Ly(Y ) (9)

where Ly(Y ) for modality y is defined with the same rules as
Lx(X). The hyper parameters, i.e., ρx, ρy, βx, βy , λx, λy , can vary
among different modalities for better performance and can be found
by grid search.

3.2.2. Inter-modal Learning

One main advantage of the DME is the ability to learn inter-modal
correlations among different modalities. After we trained auto-
encoders for each modality, we can extract the hidden-layer activa-
tions hx

1 ,h
y
1 and conduct another layer-wise learning procedure to

capture the inter-modal correlations. Basically, we concatenate the
activations as h = [hx

1 ,h
y
1 ], and train a second auto-encoder with h

as the input. The objective function Lh(h) we want to minimize is

Lh(h) =
1

2N
‖ĥ− h‖2+λxy‖W xy‖2+βxy

Hxy∑
j=1

KL(ρxy‖ρ̂j)

(10)
where ĥ is the reconstruction of h, W xy is weight matrix, ρ̂j is
the mean activation of the jth neuron, Hxy is the number of hidden
units, and λxy, βxy, ρxy are the respective hyper-parameters.

In this step, by combining two modalities, we are able to mine
the correlations between these modalities. This inter-modal learning
procedure benefits from the intra-model correlations which were in-
fered previously, allowing higher-order structures in the data to be
captured more accurately.

4. EXPERIMENT RESULTS

4.1. Dataset

The dataset used for the experiments consists of three modalities:
temperature (in degrees Celsius), humidity (relative humidity in %)
and illuminance (light integral lux), collected through an agriculture
sensor network of 40 sensors deployed in different locations over 4
months. After preprocessing, we get a total of 3306 samples for each
modality, each consisting of 144 readings with timestamps ranging
from 00:00 to 23:50 at 10-minute intervals and no data is missing.
306 samples are randomly selected for validation, 600 for testing and
the remaining 2400 for training. The basic statistics of the training
sets are show in Table 3.

Table 3: Dataset Statistics

Temp. Hum. Illum.
Min 21.16 9.58 0
Max 60.95 100.00 98295.30
Lower Quartile 25.90 72.63 0
Median 27.60 84.42 29.68
Upper Quartile 31.28 90.87 2411.29
Standard Deviation 5.03 16.16 6635.97

4.2. Experimental Setup

We evaluate our model using the above dataset for two analytical
tasks: 1) missing data imputation, 2) new modality prediction. Two
different missing data imputation experiments are conducted: one
for humidity and temperature (HT), and another one for humidity
and illuminance (HI). The missing rate varies from 10% to 80%. To
get datasets with missing values, the indicator matrix S is randomly
generated with respect to the missing rate. For example, under 10%
missing rate, each entry in S will be set to 0 with probability 0.1.
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More formally, we are exploring the Element Random Loss pattern
[8].

The parameter k in kNN is chosen as k ≈ d
√
ne = 49 where

n is the number of training samples. For sparse-PCA, we extract
20 sparse atoms and set the sparsity controlling parameter as 0.2.
The experiments of three neural network models are conducted
with Theano and the hidden layers have 6 hidden units. Mini-batch
stochastic gradient descent (MSGD) is employed in optimization.

4.3. Missing Data Imputation Evaluation

Five algorithms are compared for missing data imputation, namely
UAE in Fig.1.(b), CAE in Fig.1.(b), kNN [9], sparse-PCA(S-PCA)
[10] and DME. The RMSE for different algorithms are shown in
Table.1 and Table.2.

Humidity-Temperature: Firstly, we can observe that DME outper-
forms all other models . In fact, the RMSE for kNN and sparse-PCA
increases dramatically as the missing rate increases. The humidity
RMSE of kNN is 2 to 7 times larger than DME, and the correspond-
ing error of sparse-PCA is also 3 to 6 times larger than DME. For
temperature, DME outperforms kNN and sparse-PCA by an order of
magnitude when the missing rate is greater than 50%.

We introduce another metric:

Relative RMSE = RMSEAlgorithm − RMSEDME (11)

for further comparison. A larger relative RMSE indicates that DME
is performing better. As we can see, the relative RMSE to kNN and
Sparse-PCA increase significantly with the missing rate, demonstrat-
ing that DME is more robust than the linear methods, especially for
high missing rates. The main reason is that kNN and sparse-PCA
cannot capture the underlying data distribution accurately when lots
of data is missing. However, DME employs nonlinear transforma-
tions, producing models which are much more expressive. This ob-
servation is also supported by the good performance of UAE and
CAE.

Among the three neural network based models, the best per-
former turns out to be DME. The performance gain can be credited
to the higher-order inter-modal features captured by DME. Learning
such features seems to be challenging for the shallower UAE and
CAE models. Another interesting observation is that when the miss-
ing rate becomes larger, the improvement also increases. The result
again demonstrates that DME is more robust than the other models
at learning underlying structures in the data, even when many of the
values are missing.

Humidity-Illuminance: In these experiments, DME mostly outper-
forms other models in imputing humidity; in the few cases where
it is not the state-of-the-art, the performance is only slightly worse.
For illuminance which has a long-tailed distribution, DME is worse
than kNN and S-PCA when the missing rate is 10% or 20% because
the high variability in long-tailed distributions is not easily captured
by neural networks with few hidden units. Meanwhile, when the
missing rate is low, kNN is able to estimate the missing values just
by querying the many neighboring sensors which do have readings.
When the missing rate becomes larger, the performance of kNN de-
grades due to the lack of neighbors, while DME is better able to
capture the diminishing information using its 6 fusion units.

4.4. New Modality Prediction

In this section, we use the fused representation of humidity and illu-
minance to predict temperature. We train another auto-encoder for
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temperature with 6 hidden units, then an over-complete feed-forward
network with 12 hidden units is employed to learn a map from the
extracted shared representations to the hidden activations for temper-
ature. These three neural networks are stacked together, as shown in
Fig.2. The RMSE between the predicted and the original tempera-
ture data is shown in Fig.3.

Despite missing values in the input data, our framework is still
able to predict the new modality quite well, with an RMSE of less
than 10◦C. One counter-intuitive observation is that as the miss-
ing rate increases, the prediction RMSE decreases. Several reasons
account for this phenomenon. Firstly, as showed in [17], missing
values can act as a regularizer to help achieve some improvements.
Secondly, we did not conduct any finetuning or hyperparameter grid
search over the entire tri-modal stack to optimize the performance
of the new modality prediction. These additional optimization steps
could reverse the decreasing trend in the RMSE.

5. CONCLUSION

In this paper, we proposed the DME framework to overcome the
challenges of missing data imputation and data fusion in wireless
sensor networks. DME is able to capture both the intra- and inter-
modal correlations, demonstrating outstanding performance with a
real-world sensor dataset. Future work can be done on more com-
plex dataset with different loss patterns. Together with the multi-
layer hierarchical DME framework, we hope to design efficient dis-
tributed computing algorithms for sensor network that reduce power
consumption, bandwidth usage and storage requirements.
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