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ABSTRACT
In many event detection applications, training data may

contain tags with multiple, simultaneous events. This is

particularly likely when the definition of “event” is broad

and includes events that can persist for an extended

period of time. Decomposing a mixed signal into signals

corresponding to individual events is non-trivial. In this

paper, we propose a non-negative matrix factorization

(NMF) method that generates independent dictionaries for

different events from training data with overlapping events.

The proposed method adds a mask matrix into the

regularization term in conventional NMF approaches. This

mask matrix captures known event labels in the training data,

so that only related dictionary terms are updated during

iteration. The effectiveness of the proposed approach is

evaluated using both synthetic and real data.

Index Terms— Event detection, Internet of Things (IoT),

non-negative matrix factorization, signal decomposition

1. INTRODUCTION

Internet of Things (IoT) applications have become increas-

ingly popular over the recent years [1]. Many of them aim at

detecting events from sensor signals. For example, acoustic

signal processing for sound-event detection has been exam-

ined by researchers for the last several years [2–11], where the

goal is to infer events in a physical environment from acoustic

signals. Other examples include the detection of the type and

number of electrical appliances in buildings from consump-

tion patterns in the power line [12], the monitoring of driver

behavior from various sensors in a car [13], etc. These ap-

plications enable us to better understand the environment and

provide personalized services to users.

One challenge in event detection applications is that sig-

nals captured from the physical environment often contain
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components that belong to multiple events. Even for a sin-

gle event, the observed signal may be a combination of mul-

tiple base signals. For example, an acoustic signal captured

in an outdoor environment can simultaneously include the

sounds of cars, people speaking, and the wind blowing, each

of which can be defined as an event. The sound of a sin-

gle event can also consist of multiple acoustic atoms that are

mixed together. To detect different events, one needs to de-

compose the original signal into base signals that capture the

fundamental components.

1.1. Non-Negative Matrix Factorization (NMF)

A common approach of performing such decomposition is to

use non-negative matrix factorization (NMF) [14].

Here, the N observed non-negative signals (or features,

such as spectrograms, extracted from these signals) are

expressed as an M -by-N matrix V = [v1,v2, ...,vN ].
The goal is to decompose V into an M -by-K matrix

W = [w1,w2, ...,wK ] multiplied by a non-negative

K-by-N matrix H = [h1,h2, ...,hN ], such that

V ≈ WH, s.t. W,H ≥ 0 (1)

where the “≥” comparison is element-wise. Each column

vector vn represents an observed signal, which can be cap-

tured in different time frames or at different receivers. The

column vectors wk are the bases (also known as dictionary)

of which the signals vn are composed. The column vector hn

(known as representation) specifies how the dictionary atoms

wk are combined in the signal vn.

Many NMF techniques have been proposed to minimize

the approximation error in (1), where the error can be ex-

pressed in the form of Euclidean distance (i.e., ‖V −WX‖2
where ‖ · ‖ stands for the Frobenius norm) or K-L divergence

between V and WH. The initial work in [15] proposed it-

erative algorithms to approximately solve the NMF problem,

where it was also argued that NMF is a non-convex problem

so that one should not expect to find efficient algorithms for

finding the exact solution. Subsequent extensions to the orig-

inal NMF problem include adding a regularization term to the

error term to encourage sparsity of H [16–19], as well as more

efficient solution approaches [20].
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1.2. NMF Applied to Event Detection

The application of NMF to sound event detection has received

attention in recent years. In [8], a method that learns differ-

ent dictionaries for different events was proposed, where each

event d ∈ [1, D] has its own dictionary W(d) that is part of

the overall dictionary W = [W(1),W(2), ...,W(D)]. It is

assumed that clean single-event signals are available at the

dictionary generation (i.e., training) phase, so that for event

d, the dictionary W(d) can be learned by decomposing the

signal matrix V(d) (which only contains event d) into the

learned dictionary W(d) and its representation H(d). In the

event detection phase, signals in matrix V may contain mul-

tiple events, and V is decomposed as follows:

V ≈ [W(1),W(2), ...,W(D)]

⎡
⎢⎢⎢⎣

H(1)

H(2)

...

H(D)

⎤
⎥⎥⎥⎦ , (2)

s.t. W(d),H(d) ≥ 0, ∀d

The likelihood of the presence of event d in signal vn is then

proportional to the sum of elements in h
(d)
n , where H(d) =

[h
(d)
1 ,h

(d)
2 , ...,h

(d)
N ].

It was later found in [5,10] that the convex hull of the dif-

ferent events’ dictionaries generated from the above approach

may overlap, which can lead to inaccuracies in event detection

when directly using the above method. A preprocessing step

to the training data using unsupervised NMF and K-means

clustering was proposed in [5, 10], so that subsequent NMF

processes are constrained within the clusters to avoid the re-

gion overlapping problem. This approach received very good

results in the DCASE 2016 Challenge [21]. Although sound

event detection has been predominantly studied in the liter-

ature, NMF-based approaches can also be applied to many

other domains such as electricity monitoring [12].

1.3. Multiple Overlapping Events in Training Data

A limitation in the above approaches is that they require

clean signals with single events for model training. Such

signals may not be always available in practice, because

signals captured in a real-world environment may contain

multiple events at the same time. In complex environments,

multiple events can be present for the majority of time.

Therefore, how to train a model from training data with

multiple overlapping events is an important problem.

One possible approach of performing training with multi-

event signals is to separate the signal into components corre-

sponding to single events using source separation techniques

[22]. However, these techniques usually require some prior

knowledge of signal statistics and it is often difficult to match

the separated sources with event labels.

An NMF-based approach was proposed in [7], where the

training signal vector vn is extended to N + D dimensions

with the last D dimensions containing binary values repre-

senting the activation of events. A separate dictionary W(l)

is learned for the event labels. At the detection phase, the rep-

resentation matrix H is first found from the observed signal

V and the signal dictionary W(s) such that V ≈ W(s)H.

Then, the label dictionary W(l) is applied to H, and W(l)H
contains the likelihoods of different events.

In this paper, different from existing approaches, we pro-

pose a more direct method of incorporating overlapping event

information in NMF. We consider a grouped dictionary model

as in (2), while noting that this model can be integrated into

larger systems such as those in [5, 10] to improve perfor-

mance. We focus on the standalone NMF problem in this

paper, and leave system integration aspects for future work.

The approach we take is inspired by the approaches for NMF

with sparsity constraints as in [16–19], where a regularization

term is included in the objective function to encourage sparse-

ness. We propose a novel regularization approach using mask

matrix in this paper, so that event-based dictionaries can be

generated from training data with overlapping events.

2. PROPOSED METHOD

We consider the grouped dictionary model as in (2). Let Kd

denote the number of dictionary atoms for event d. Then, the

sizes of matrices W(d) and H(d) are M -by-Kd and Kd-by-

N , respectively. Note that
∑D

d=1 Kd = K.

2.1. Dictionary Generation

In the dictionary generation phase, we are given a training

dataset V with N different signals. Each of these signals are

labeled with one or multiple events. Our goal is to find the

W and H matrices in (2). The resulting W matrix is used for

detecting events from new signals later.

To maintain the grouping structure, we define a K-by-N
matrix A = [a1,a2, ...,aN ], where each column vector an
has D groups, i.e., an = [a

(1)
n ,a

(2)
n , ..., a

(D)
n ]T. Here, a

(d)
n is

a Kd dimensional vector. For the n-th training sample vn, we

set a
(d)
n = 0 if vn has event d, and we set a

(d)
n = 1 otherwise,

where 0 and 1 are vectors (of suitable size) containing all

zeros and ones, respectively.

Because all elements in h
(d)
n should be equal to zero if the

training sample vn does not include event d, with the above

definition of A, we can equivalently say that Hij = 0 if Aij =
1, where Hij and Aij are the (i, j)-th element of H and A,

respectively. We therefore say that A is a mask of H.

We then solve the following:

min
W,H

‖V −WH‖2 + λ‖A�H‖1, (3)

s.t. W,H ≥ 0
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where ‖ · ‖ denotes the Frobenius norm, i.e.,

‖X‖ =
(∑

i

∑
j |Xij |2

) 1
2

for an arbitrarily defined matrix

X, ‖ · ‖1 is defined as ‖X‖1 =
∑

i

∑
j |Xij |, “�” denotes

the element-wise multiplication of two matrices, and λ > 0
is a constant parameter of the regularization term. It is easy

to see that if λ is large enough, Hij is forced to zero when

Aij = 1. In this way, only those dictionaries for events that

are present in the training signal are associated to the error

minimization procedure.

The above definition uses Euclidean distance as the error

metric. A similar objective can be defined for K-L divergence.

We focus on the Euclidean distance metric in this paper for

simplicity, but the proposed approach can be easily extended

to K-L divergence or any other error metrics by modifying the

objective function and solution algorithm.

A modified version of existing NMF algorithms can be

used to solve the optimization problem in (3), to take into ac-

count the new regularization term. For simplicity, we propose

an iterative solution approach based on the work in [16, 17]

in this paper, while noting that other solution approaches can

be applied as well after proper modifications. The iterative

algorithm for solving (3) includes the following steps:

1. Generate mask matrix A based on the event labels in

training dataset V.

2. Initialize W and H with random positive values be-

tween 0 and 1.

3. Normalize each column of W, i.e., wk ← wk/‖wk‖1.

4. Update H using

H ← H� WTV

WTWH+ λA
(4)

where the division X
Y is defined element-wise.

5. Update W using

W ← W � VHT +E(WHHT �W)

WHHT +EVHT �W
(5)

where E is an M -by-M matrix with all elements equal

to one.

6. Repeat from step 3 until convergence.

Using the same methodology as in [15,16], one can show

that the above algorithm is guaranteed to converge to a local

minima. The global optimum cannot be guaranteed with this

or any existing NMF algorithm, because NMF is essentially

a non-convex optimization problem [15]. However, these al-

gorithms work reasonably well in practice, and thus NMF is

widely used in many applications.

2.2. Event Detection

In the event detection phase, for newly observed signals V
(which may contain either one or multiple signals), we fix W
found from Section 2.1, and update H according to (4) until

convergence. Since W(d) is the dictionary for event d only,

the values of the elements in H(d) represent the likelihood of

event d. In particular, for the n-th observed signal vn, the

likelihood that vn has event d can be expressed as ‖h(d)
n ‖1.

We can define a threshold γ > 0, so that vn is classified as

containing event d if

‖h(d)
n ‖1 ≥ γ (6)

By checking the condition (6) for all n and d, we can obtain

result on which events are present in each vn.

3. EXPERIMENTATION

We evaluate the performance of the proposed method via ex-

perimentations with three different datasets, which are sum-

marized as follows.

The synthetic dataset contains training and testing signals

synthetically generated according to (2), where we first ran-

domly choose W, then randomly generate separate matrices

Htrain and Htest. The signals Vtrain = WHtrain and Vtest =
WHtest are then respectively used for training and testing.

The random matrices have values uniformly distributed be-

tween 0 and 1. Parameters related to the total number of

events, number of dictionary atoms per event etc. are chosen

as D = 10, Kd = 5 for all d, M = 1000, Ntrain = Ntest =
2000. There is also a limit on the maximum number of events

present in each single signal vn, which we will specify later.

The dictionary generation and event detection algorithms do
not have knowledge of the signal generation procedure.

The experiment also uses two real sound datasets. One

is an industrial sounds dataset containing sounds of drilling,

idle engine, jackhammer, water pump (new), and water pump

(old) [11]. This is an example of industrial IoT applications

where the goal is to use acoustic signals to monitor the con-

dition of machine rooms and detect any abnormalities. The

other is an office sounds dataset from the training data1 of

Task 2 in DCASE 2016 Challenge [21], containing sounds of

clearing throat, coughing, door slam, drawer, keyboard, keys

dropping, knocking, human laughter, page turning, phone,

and speech. This is an example of home/office IoT applica-

tions for detecting human living/working condition.

Each label in the real sound dataset is considered as an

event. For each event, approximately 25% of the data is used

as testing data, and the rest is used as training data. Be-

cause most sound clips in the available dataset only contain

a single event, we generate multi-event sounds by randomly

mixing the sound clips. Each sound clip is split into frames

of 0.5 seconds, frames with different labels are mixed with

different amplification factors to generate an acoustic signal

with multiple events. The spectrograms (with five windows)

of mixed acoustic signals are used as the input signals V for

1At the time of submission, labeled evaluation dataset is not available to

the public. Therefore, we only use the training dataset of Task 2 in DCASE

2016 Challenge and split this dataset further into training and testing data.
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Table 1: Performance results of different approaches under different settings

Parameter Q Q = 1 Q = 3 Q = 5

Approach Proposed [7] [8] Proposed [7] [8] Proposed [7] [8]

Synthetic
F1 score 0.9977 0.3753 0.9977 0.9934 0.3533 0.9840 0.9857 0.3445 0.9521

EER 0.0033 0.7054 0.0033 0.0087 0.7234 0.0205 0.0182 0.7680 0.0611

Industrial sounds
F1 score 0.7752 0.7342 0.7752 0.7116 0.7038 0.6999 0.6963 0.6957 0.6756

EER 0.3462 0.3621 0.3462 0.3227 0.3689 0.3237 0.3236 0.3739 0.3435

Office sounds
F1 score 0.4714 0.4405 0.4714 0.4465 0.3855 0.4106 0.4362 0.3845 0.3908

EER 0.5424 0.5689 0.5424 0.5776 0.6364 0.6210 0.5845 0.6354 0.6533

Threshold γ

0 1 2 3 4 5

Va
lu

e

0

1

2

3

4

Precision
Recall
F1 score
Event error rate

Fig. 1: Performance metrics under different values of γ for

the proposed approach on synthetic dataset.

NMF. For the real sound datasets, we set Kd = 50 for all d,

Ntrain = 1500, Ntest = 500, while the values of D and M
depend on characteristics of the real data.

We consider the overall precision, recall, F1 score, and

event error rate (EER) as performance metrics. See [3, 7] for

details of their definitions. At the high level, the F1 score can

be understood as the accuracy jointly considering the preci-

sion and recall. The EER is an error rate that can have val-

ues above one because it is normalized by the ground truth

number of events instead of the maximum number of possi-

ble events. A higher F1 score, precision, recall, and a lower

EER indicates a better performance.

We fix λ = 10 in the experiments. The number of active

events in each testing signal is uniformly distributed among

{1, 2, 3}. In each training signal, the number of active events

is uniformly distributed among {1, 2, ..., Q}, where the value

of Q is defined later. All experiments were run with 10 differ-

ent random seeds and the average performance is shown.

We first study the impact of the threshold value γ in (6).

Fig. 1 shows the performance results on the synthetic dataset

with Q = 3 and different values of γ. We see that, as one

should expect, the precision increases and the recall decreases

when γ increases, because the false positive rate decreases

and the false negative rate increases with increasing γ. There

exists an optimal γ that brings the highest F1 score and low-

est EER. This optimal threshold can be found through cross

validation during the training process in practice.

We then compare the performance of the proposed ap-

proach against the label dictionary approach in [7] and the sin-

gle event grouping approach in [8], for all three datasets. For

the method in [8], if the training signal has multiple events,

a single event is randomly chosen. The results are shown in

Table 1. We see that the proposed approach performs best in

terms of F1 score and EER in all cases. The performance dif-

ference between the proposed approach and other approaches

differ on a case-by-case basis. For example, the approach

in [7] performs significantly worse than other approaches for

the synthetic dataset, because the synthetic signals for dif-

ferent events are generated from largely different bases due

to the random generation procedure. Therefore, a dictionary

with event grouping such as the proposed method and the

method in [8] gives much better performance than a method

that does not perform this grouping. The performance gen-

erally becomes worse for all approaches when Q becomes

large, i.e., when the training signal contains more overlap-

ping events. This is intuitive because it should be harder to

learn the dictionaries from signals with mixed events than

from clean signals with a single event. When Q = 1, the

proposed approach becomes the same as the approach in [8],

thus their performances are the same in this case. The per-

formance gain increases with larger Q, because the proposed

method takes into account multiple labels for dictionary gen-

eration while [8] does not.

4. CONCLUSION
In this paper, we have proposed a simple but efficient method

of performing NMF on training data with multiple overlap-

ping event labels. The proposed method uses a mask matrix

to restrict the values of the representation matrix during dic-

tionary generation, so that separate dictionaries can be learned

for different events. A simple thresholding approach is used

to detect events in a new signal. Experiments using multiple

datasets have shown superior performance of the proposed ap-

proach compared to other comparable approaches. Because

NMF is an important building block in modern event detec-

tion systems, we have focused on the NMF process alone in

this paper. We note that the proposed method can be inte-

grated into a larger event detection system that has multiple

processing stages to further improve performance. Such sys-

tem integration aspects can be studied in the future. Future

work can also consider the use of more realistic datasets, such

as those with partly noisy labels and real-world signal mix-

tures, for evaluation.
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