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ABSTRACT
We introduce an adaptive version of directed information to
estimate an influence graph over nodes with time-varying fea-
tures. Originally developed as a generalization of the Shan-
non Mutual Information for quantifying the effect of feed-
back in a simple communication channel, directed informa-
tion (DI) measures the amount of causal, time-varying influ-
ence that one node’s actions have on another node. By es-
timating these quantities, we can infer a directed graph that
captures the flow of influence between nodes. We introduce
an online time-averaged version of DI called adaptive directed
information (ADI) to study the difference in graphical struc-
ture over time. This method is applied to two Twitter US
political datasets to track changes in the graphical structure
between candidates’ Twitter feeds.

Index Terms— Directed Information, Social Networks,
Graph Estimation

1. INTRODUCTION

Estimating structure and interaction among targets of inter-
est is a common problem investigated by the signal process-
ing community. Here we are interested in estimating graphi-
cal structure that captures directed interactions from observa-
tional data generated by multiple agents. Often, it is possible
to capture information on the joint behavior of these agents
over time. For instance, we may want to infer the interaction
of equities in the stock market over time from reported trad-
ing activity, or infer social interaction of moving objects in a
scene from video. We introduce an adaptive version of the in-
formation theoretic measure directed information to quantify
these interactions in an on-line recursive fashion.

Directed information (DI) was introduced in [1] to ad-
dress the problem of feedback in a simple channel. DI can
be thought of as an extension of mutual information (MI),
and it has extensions to both infinite alphabet channels and
continuous time [2]. Graphs created from DI, often called in-
fluence graphs, have been explored in the literature previously
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[3, 4, 5]. The authors of [4] considered influence graph esti-
mation using the well known Granger causality measure that
is equivalent to the DI under a Gaussian assumption. The dif-
ficulty with DI is that its high computational and sample com-
plexity do not allow for easy and scalable estimation methods,
especially when the data is high dimensional, non-Gaussian
and discrete. We describe a method that allows a time-varying
DI graph to be estimated under a Markov model.

Standard DI, while able to take into account time-varying
properties of the agents over time, is insensitive to abrupt
changes in interaction, dependence, and influence, due to its
heavy weight on past observations. We introduce adaptive di-
rected information (ADI) that modifies DI so that it is more
capable of picking up subtle shifts in the nodes’ interactions.
We show in this paper that, under a Markov assumption, the
ADI can be computed efficiently in an online fashion using
a recursive updating scheme over time. To our knowledge,
with the exception of our preliminary work [6] and the fuller
treatment given in this paper, the recursive update form of the
ADI has not appeared elsewhere in the literature. Under a
simplifying instantaneous conditional independence assump-
tion the ADI updates depend only on the joint distributions of
third order. To illustrate the ADI we apply it to two Twitter
datasets to estimate the influence graph among Twitter users.

This paper is organized as follows: Section 2 discusses
related work on influence estimation, DI, and DI graphs. Sec-
tion 3 will introduce the problem and some notation conven-
tions. 4 will introduce the concept of DI and ADI. Section 5
will demonstrate the chosen model for text information, and
some assumptions made to make ADI estimation tractable.
Section 6 will explain the process of generating DI and ADI
graphs. Section 7 will introduce the two Twitter datasets, and
discusses results from the described methods. Finally, Sec-
tion 8 summarizes the contributions of the paper.

2. RELATED WORK

Influence among actors has been studied in many settings
[7, 8, 9]. DI has been studied extensively both theoretically
and in the context of applications. The estimation of the di-
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rected information rate for stationary ergodic processes has
been studied in [10]. Some applications of DI are covered in
[11, 12] regarding gambling and portfolio theory. In addition,
[13] uses DI to infer biological regulatory networks.

DI graphs have also been studied, most recently in [3],
which focuses on the estimation of the causal DI graph, as
well as DI estimation. The authors of [3] identify sample
complexity for both non-parametric and parametric estima-
tors for DI. The focus of [3] is on cases where the processes
are stationary. [4] also discusses DI graphs, with their focus
on the relationship to Granger causality. To our knowledge,
no other group has introduced an adaptive version of DI.

3. SETUP AND NOTATION

Consider a set of n agents (N1, N2, . . . Nn), represented as
nodes in a graph, that generate P -dimensional features that
evolve over T time samples. We assume that the features are
binary. We denote a random vector evolving over a time pe-
riod t as a capital letter with a subscript, e.g., Xt. A capital
letter with a superscript T represents the random vectors up
to and including T , XT = X1, X2, . . . , XT . Finally, a low-
ercase letter with a superscript and a subscript, xit, represents
the scalar random feature i at time t.

4. DIRECTED INFORMATION

4.1. Definition and Properties

Directed information is an information theoretic measure
originally introduced by [1] to study the effect of feedback
on channel capacity. Given a discrete communications chan-
nel P (Yt|Xt, Y t−1), with input time series X1, X2, . . . , Xt

and outputs Y1, Y2, . . . , Yt, the directed information (DI) is
defined as:

DI(XT → Y T ) =

T∑
t=1

I(Xt;Yt|Y t−1). (1)

The DI is asymmetric, DI(XT → Y T ) 6= DI(Y T →
XT ). Furthermore, when the channel exhibits no feedback,
e.g.,

P (Xt|Xt−1Y t−1) = P (Xt|Xt−1), (2)

DI is equivalent to the standard Shannon mutual information
[14].

4.2. Adaptive Directed Information

DI can account for the time-varying nature of interaction
among targets (i.e. changing P (Yt|XtY t−1)), but does not
vary over time and places equal weight on each time point
in the time series. We introduce the adaptive directed in-
formation (ADI) as a time varying modification of DI de-
fined as a discrete time filter g(t, i) applied to the sequence

I(Xi;Yi|Y i−1), i = 1, . . . ,∞:

(ADINx→Ny
)t =

t∑
i=1

g(t, i)I(Xi;Yi|Y i−1) (3)

The filter, g(t, i) can be chosen in various ways, including
the windowed exponential g(t, i) = e−(t−i)λct, i ≤ t, λ > 0,
where ct = (1−e−λ)/(1−e−(t+1)λ), or the uniform window
of length T , g(t, i) = 1/T, |t− i| ≤ T .

5. EMPIRICAL ESTIMATION OF DI AND ADI

Empirical estimation of the DI and ADI from data poses chal-
lenges, especially in high feature dimension P . The complex-
ity of estimation can be reduced by imposing Markov assump-
tions, performing dimension reduction on the feature space,
and making simplifying approximations to the joint distribu-
tions. Under a jointly Markov assumption on the pair of time
series {(Xi, Yi)}i we obtain a simplification of the following
conditional probabilities:

P (Xt, Yt|Xt−1, Y t−1) = P (Xt, Yt|Xt−1, Yt−1), (4)

P (Xt|Xt−1) = P (Xt|Xt−1), (5)

P (Yt|Y t−1) = P (Yt|Yt−1). (6)

The Markov representations (4-6) reduce the joint distri-
bution on the left side of (4), which depends on the entire
past {(Xi, Yi)}t−1i=1 , to the right hand side of (4), which only
depends on the most recent past (Xt−1, Yt−1). Thus (4) can
be computed from the joint distribution of the four variables
{Xt, Yt, Xt−1, Yt−1}, what we call a fourth order distribu-
tion. One can simplify further by imposing the additional “in-
stantaneous conditional independence” property that Xt and
Yt are independent given past information:

P (Xt, Yt|Xt−1, Yt−1) =

P (Xt|Xt−1, Yt−1)P (Yt|Xt−1, Yt−1), (7)

which only involves third order distributions. In order to
exploit this factorization to estimate DI and ADI, we write DI
in terms of conditional entropies:

DI(XT → Y T ) =

T∑
t=1

H(Yt|Y t−1)−H(Yt|Y t−1, Xt) (8)

Using (4-6), we obtain:

DI(XT → Y T ) =

T∑
t=1

H(Yt|Yt−1)−H(Yt|Yt−1, Xt, Xt−1).
(9)

DI(XT → Y T ) = DI(XT−1 → Y T−1)

+H(YT |YT−1)−H(YT |YT−1, XT , XT−1).
(10)
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Using standard properties of conditional entropy and (7),
the DI expands to

DI(XT → Y T ) = DI(XT−1 → Y T−1)

−H(YT−1)−H(YT , YT−1, XT , XT−1)

+H(YT−1, XT , XT−1) +H(YT , YT−1)

(11)

= DI(XT−1 → Y T−1) +H(YT , YT−1)−H(YT−1)

−H(YT |XT−1, YT−1)−H(XT |XT−1, YT−1)

−H(XT−1, YT−1) +H(YT−1, XT , XT−1).

(12)

Hence, the DI can be computed from third order distributions
in recursive form where only third order entropy is required
for updating the DI at time T − 1 to time T .

We can calculate ADI directly from DI, but if we choose
to use an windowed exponential filter g(t, i), we obtain the
recursion:

(ADINx→Ny )t = α(ADINx→Ny )t−1 + (1− α)[H(YT , YT−1)

−H(YT−1)−H(YT |XT−1, YT−1)−H(XT |XT−1, YT−1)

−H(XT−1, YT−1) +H(YT−1, XT , XT−1)],

(13)

where α = (e−λ − e−(t+1)λ)/(1− e−(t+1)λ).

5.1. Estimating Joint Distributions of Binary Vectors

Under the instantaneous conditional independence assump-
tion the third order distributions of the formP (XT , YT , YT−1)
must be estimated in order to calculate ADI. We implement
this estimator by binning together groups of time samples in
order to estimate the distributions.

For concreteness we specialize to feature vectors X =
[x1, . . . , xP ] and Y = [y1, . . . , yP ] with binary elements, i.e.,
xi, yi ∈ {0, 1}. While any feature dependency model could
be accommodated, for simplicity we will assume elementwise
independence of the feature vectors — namely, that the j-th
scalar feature xtj is jointly independent of the other scalar fea-
tures xti and yti , for i 6= j, t = 1, . . . , T . This allows us to
factorize the joint distributions of three feature vectors into
third order distributions of scalar variables. Hence, for exam-
ple,

P (Xn, Xn−1, Yn−1) =

P∏
i=1

Pi(x
i
n, x

i
n−1, y

i
n−1) (14)

=

P∏
p=1

θ(1−t1)(1−t2)(1−t3)p1 θ(1−t1)(1−t2)(t3)p2 . . . θt1t2t3p8 .

(15)

{θpi} are parameters that must be estimated. We propose us-
ing maximum likelihood estimators with Stein regularization
[15]:

θ̂pi = (1− λS)θ̂ML
pi + λS , (16)

where θ̂ML
pi is the maximum likelihood estimate of θML

pi , and
λS can be chosen to optimize bias-variance tradeoff as in [15].

The factorization (17) allows the entropy to be computed
from individual feature entries:

H(YT−1, XT , XT−1) =

P∑
i=1

H(yiT−1, x
i
T , x

i
T−1). (17)

We will apply the proposed ADI estimator to text data,
specifically corresponding to the content of tweets from Twit-
ter. From this data, we bin the tweets, forming documents of
collected tweets over time, and model each word as a binary
random variable indicating its presence or absence. These
vectors are then used to estimate the {θpi} parameters.

5.2. Computational and Model Complexity

Each probability estimate for a third order distribution takes
O(t) computations, where t is the number of samples used
to calculate the estimate. There are O(P ) entropies to calcu-
late for each estimate of directed information, and each en-
tropy can be calculated in O(1). We must calculate the DI
T/t times for each pair, and there are n(n − 1)/2 = O(n2)
pairs. In total, calculation of every pairwise DI in the graph
requires O(TPn2) computations. ADI has an identical com-
plexity analysis. For each DI calculation, we estimate 16P
parameters, and these parameters can be used for both or-
derings of the pair. Therefore, our method must estimate
(16PTn(n − 1))/(2t) parameters. This compares favorably
with other methods that attempt to estimate higher order dis-
tributions; for general vectors of binary features and pairwise
DI, one must estimate O(2P ) parameters for each pair.

6. CREATING INFLUENCE NETWORKS

Once pairwise DI and ADI have been calculated for all n
nodes, we are able to infer graphical structure. The most naı̈ve
way to do this is to simply use each non-zero DI entry as a di-
rected weighted edge between targets; this approach can be
quite noisy. A more reasonable approach is to create a hy-
pothesis test for each edge, and only keep the edges that have
a statistically significant influence.

For DI, there are two possible ways to do this. One
method, the approach of [16], uses a functional transforma-
tion leading to approximation of p-values for existence of an
edge. Another method, proposed in [15], invokes a central
limit theorem for DI. In this paper, the latter approach is used.

7. APPLICATION TO TWITTER DATASETS

The methods described above are applied to two datasets. The
first, which is a dataset regarding the United States Presiden-
tial primary candidates, are all the tweets from the campaign
Twitter accounts of each candidate from Oct. 1st, 2015 to
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Jan. 13th, 2016. The second dataset is of the members of the
United States Senate, over the same time period.

7.1. 2015 US Presidential Candidates Dataset

This dataset consists of 15 primary candidates. In total, there
are 8918 tweets in the dataset. After cleaning and stemming,
and binning the tweets into 12-hour time periods, the features
(words) are further filtered as follows: if the word is used in
less than 10 of the bins or greater than 50% of them, it is
discarded. In total, 1554 features remain.
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RP

BC

RS

JG

MR

DT

TC

Fig. 1. Relative DI network of US Presidential primary can-
didates. The width of the directed edge as well as the shade is
related to the magnitude of the DI, and the size of each node
represents the volume of tweets.

Fig. 1 shows the relative DI for the entire time period,
after hypothesis testing at a 5% family-wise error rate prob-
ability, where the magnitude of relative DI is |DIXT→Y T −
DIY T→XT |, and the direction of the arrow represents the sign
(arrow points towards Ny if DIXT→Y T is larger). The width
and shade of the directed edge is related to the magnitude of
the relative DI. Further, the size of each node represents the
volume of tweets. The network in Fig. 1 has some interest-
ing properties. First, we see that nodes such as Hillary Clinton
and Rand Paul are sinks of influence, that is they have high in-
degree and are influenced by many others. Conversely, there
are nodes with high outdegree, such as Jeb Bush and Bernie
Sanders that are less influenced by others.

Fig. 2. ADI for Bernie Sanders and Hillary Clinton. Above
the graph are representative tweets related to the circled spike.

Fig. 2 demonstrates the utility of ADI. ADI was calcu-
lated using an windowed exponential filter with λ = 0.7. Us-

ing ADI, we are able to see the time-varying nature of in-
fluence, this time specifically between Bernie Sanders and
Hillary Clinton. We see two large spikes in the ADI over
time. The tweets above the graph partially contribute to the
circled spike. Specifically, we see that Bernie Sanders was
discussing incarceration and the upcoming Democratic debate
before Hillary Clinton does, which results in a spike of ADI
from Bernie Sanders to Hillary Clinton.

7.2. 2015 US Senatorial Dataset

The Senatorial dataset consists of tweets from 80 of 100 US
senators over the period Oct. 1st, 2015 to Jan. 13th, 2016.
The remaining 20 senators were excluded due to lack of tweet
volume. In total, the dataset consists of 96090 tweets. Using
a similar process as the Presidential candidates dataset, after
cleaning, stemming, and binning, we obtained 1230 features.
For the Senatorial dataset we took the bin time length to be 1
day, and took 3 bins over each estimation of DI.
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Fig. 3. ADI network of US Senators over two consecutive
time periods from left to right.

Fig. 3 are two relative ADI networks of consecutive time
periods of the senators studied. ADI was calculated using an
windowed exponential filter with exponential parameter λ =
0.7. These edges were chosen by hypothesis testing with a
5% family-wise error rate probability. Some senators are not
displayed as they have no significant edges. We notice that
there are nodes of high activity such as RB (Rob Bishop) and
MK (Marcy Kaptur). Further, we see significant evolution in
the network, with nodes adapting their behavior; this shows
the method’s ability to estimate changes in influence.

8. CONCLUSION

We presented an adaptive version of directed information,
called ADI. ADI better captures time-varying interactions be-
tween agents in a network by representing the time evolution
of DI as the output of a discrete filter with instantaneous DI
as input. We further presented efficient, recursive methods to
compute DI and ADI under Markovian and conditional inde-
pendence assumptions. Finally, we illustrated these methods
on two political Twitter datasets from the 2015 US Presiden-
tial campaign.
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