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ABSTRACT

A new approach for targeted graph sampling is proposed in
which graph sampling and classification occur together, and
content-based homophily is exploited to achieve improved clas-
sification performance. The application of network discovery
of relevant content is considered using an approach that may
be generalized to a broad class of vertex properties. The re-
sulting procedure provides the initial step of a graph analytic
processing chain whose performance is directly affected by the
quality of graph sampling. The performance of the algorithm is
measured with real network data and content observed on a so-
cial media site. Precision-Recall performance improvements of
30% are demonstrated with this dataset, compared to a baseline
approach that does not exploit homophily. Because real-world
graphs grow exponentially, this performance improvement may
have a significant impact on graph analytic algorithms with sen-
sitivities to the graph sampling quality.

1. INTRODUCTION

The challenging steps in the processing chain for graph ana-
lytics are the collection of relevant data, detection of important
subgraphs, and the inference of vertex properties. The details of
the initial graph sampling design have important consequences
for all subsequent tasks; however, this step is oftentimes ap-
proached with ad hoc methods with detrimental effects. Fur-
thermore, and especially in the context of flourishing social me-
dia and online content, effective graph sampling methods are
essential to limit the quantity of irrelevant data and focus anal-
ysis.

Figure 1 shows the growth of neighborhood size as a func-
tion of number of hops when the graph is explored using the
breadth-first search procedure. As shown in this figure, ex-
ploring social media graphs without prioritization leads to ex-
ponential growth of neighborhood size. This phenomena is in
stark contrast with our understanding that true social communi-
ties have relatively small constant sizes, about 150 or so based
on the well-established Dunbar result [15]. These communi-
ties become detectable only when the amount of irrelevant data
is reduced to a tolerable size. Therefore, it is critical that data
sampling techniques reduce the amount of noise introduced by
indiscriminate sampling.
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Fig. 1. Graph order versus hop length on real data using repre-
sentative examples from a social media network and technical
publications. The graph size grows exponentially; however, a
small fraction of graph vertices contain relevant content.

The approach presented here is focused precisely on ad-
dressing sampling issues. Targeted graph sampling is proposed
in which graph sampling and classification occur together, and
content-based homophily is exploited to achieve improved clas-
sification performance. Notions of relevance are incorporated
via a trained classifier, which then supervises and prioritizes
sampling at each step. The performance of the algorithm is
measured with real network data and content observed on a so-
cial media site. The resulting procedure provides the initial step
of a graph analytic processing chain that includes the detection
of important subgraphs and inference of vertex properties by
using algorithms whose performance is directly affected by the
quality of graph sampling.

Traditional graph sampling techniques [1, 3, 4, 6] focus on
the goal of generating a subgraph, usually unbiased, whose
topological characteristics preserve those of the original, larger
graph. Depending on the learning task, different topological
properties and different portions of the graph might be relevant.
However, for the problem of discovering a specific network that
is relevant to a particular subject, graph sampling not designed
to include these specifics fails to discover the objective net-
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works [2]. Our approach leverages a trained classifier to bias
the sampling procedure toward only the most relevant portions
of the graph based on a priori domain knowledge of relevance.

The central assumption of our sampling approach is ho-
mophily between vertices, specifically common content of
interest to relevant vertices. An existing approach that ex-
ploits content-based homophily is provided by Simsek and
Jensen [11] who consider the task of finding shortest paths to
a target node and utilize both homophily and degree centrality
to bias the sampling towards the nodes on the shortest path.
We also leverage homophily to drive the sampling process;
however, our learning objective is focused on relevance-based
prioritization of vertices rather than distance-based prioritiza-
tion.

Several authors have looked at semi-supervised vertex clas-
sification [2, 5, 12, 14], where the label information on a few
nodes and the topology of the graph is used to infer the un-
known labels of the rest of the nodes. Smith et al. [12] and Fang
et al. [2] consider the important real-world setting in which
graph sampling and classification occur together and locally.
This is precisely the problem setting we consider. Our con-
tribution is to combine the assumption of content-based ho-
mophily with this approach to achieve improved performance
for both local graph sampling and classification. Practically,
this is straightforward to accomplish because local neighbor-
hood content is easily incorporated into the classifier, a design
motivated by the assumption that shared affiliation is reflected
in similar content among neighbors—homophily.

2. MATHEMATICAL MOTIVATION

The ultimate objective of a targeted graph sampling approach is
the discovery of relevant network activity. Though homophily
is a well-established phenomenon, this property has not been
widely utilized for targeted graph sampling and cued network
detection. In this section, we extend an existing formulation for
optimum network detection to incorporate content-based ho-
mophily. Neyman-Pearson optimal network detection of a sub-
graph within a graph is achieved by thresholding the associa-
tion probabilities of each vertex in the graph with a set of cue
vertices [12]. This algorithm maximizes the probability of de-
tecting the subgraph of vertices for a fixed false alarm proba-
bility, and is a consequence of diffusion via random walks on
the graph. The novel contribution of this article is to exploit ho-
mophily for graph diffusion and hence network affiliation and
detection.

An optimum network detection approach that employs ho-
mophily has the following straightforward representation. Let
G = (V, E) be an irreducible graph (i.e. G is strongly connected)
with probabilities of relevance 9, ..., 6¢ given at the observed
vertices vy, ..., ve. Let ¢, be the probability that relevance
propagates through vertex v to its neighbors. Otherwise rel-
evance propagates to an absorbing “non-relevant” state with
probability 1 —,. Bayes’ rule implies that the relevance at
graph vertices is determined by a random walk with Markov
transition matrix f,, from vertex v to u, and the a priori proba-
bility relevance diffusion model yr, that represents that relevance
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Fig. 2. Targeted graph sampling. The baseline sampling ap-
proach on the left explores every vertex encountered. The sam-
pling in the center uses the vertex’s content to determine rele-
vance. Our approach on the right uses both vertex and neigh-
borhood content to determine relevance.

propagates through v.

Homophily is modeled by setting the transition probabilities
to be proportional to a measure of content similarity between
vertices:

t,, oc similarity(content,, content,). (1)

An algorithm that quantifies similarity between vertices will be
detailed in Section 3. Various relevance diffusion models are
specified by path length from cue vertices and time-dependent
kernels [12]. Probabilities of relevance at each vertex are deter-
mined by the relevance propagation equation:

6, = Wy ZueN(v) tuBus )

which is the average of the neighboring relevance probabilities
weighted by transition probabilities [12].

3. ALGORITHM

Start with a small set of example vertices labeled “relevant” (1)
and “not relevant” (0) based on domain knowledge applied to
their content. In this paper we use term frequency (“tf”’) for
text content; the approach applies to more general feature vec-
tors. Train a classifier C using a logistic regression model. Use
this classifier to supervise the graph exploration process, start-
ing from a set of relevant seed vertices. Only include in our
graph those neighbors that are classified as 1 by C.

We will introduce our approach to content- and network-
based graph sampling by describing two graph sampling al-
gorithms. The first, and simplest, graph sampling algorithm
(Algorithm 1) uses content only of the local vertex for classi-
fication. The second graph sampling algorithm (Algorithm 2)
incorporates network effects by including the content of the
neighboring nodes. The approaches are illustrated in Figure 2.
These algorithms create a graph G that can be analyzed using
tailored community detection algorithms [7-10, 12].

This integrated sampling and classification approach also
goes hand-in-hand with network detection algorithms that rely
upon weighted edges. For example, the unthresholded clas-
sifier outputs may be retained for use as edge weights [as in
Eq. (1)]. Additionally, Algorithms 1 and 2 may be modified
in a straightforward way to use network detection approaches



for graph sampling procedure, thereby performing the steps of
sampling, classification, and detection in a combined fashion.

Algorithm 1 Content-based Sampling

Require: seed node s, classifier C, nhop=k
1: G={}
2: function EXPLORE(s)
3 for v € N(s) do
4: Compute feature vector tf,
5: if C(tf,) == 1 and nhop < & then
6: G=G+v
7 Explore(v)
8 end if
9 end for
10: end function
11: Return G

Algorithm 2 Content+Network-based Sampling

Require: seed node s, classifier C, nhop=k
1: G=1{}

2: function EXPLORE(s)

3 for v € N(s) do

4: timeline, =" "

5: for u € random subset of N(v) do

6 timeline, = timeline, + timeline,
7 end for

8 Compute feature vector tf, using timeline,
9: if C(tf,) == 1 and nhop < k then
10: G=G+v
11: Explore(v)
12: end if
13: end for
14: end function

15: Return G

4. PERFORMANCE RESULTS

This section describes the raw data collection and performance
results, measured using precision-recall.

4.1. Data description

To collect a real-world homophily network containing both re-
lated and unrelated content, publicly available social media con-
tent was analyzed from an active online network that shares
and discusses a lexicographically distinctive subject. Seventy
(70) Twitter social media users proficient in the area of cyber-
security were identified by the authors, then the public Twit-
ter API [13] was used to analyze network content associated
with these users. A 2% hop network using these 70 accounts
as seed accounts was developed by adding new accounts that
follow or are followed by source accounts, accounts from so-
called @user mentions within text content, and accounts from
retweet mentions. The final “1/2” hop exists because the public
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Fig. 3. Twitter graph 1-hop network from original 70 social
media accounts. Following/follower links are shown in green,
@user mentions are shown in red, and retweets are shown in
blue. Only a small fraction of this large graph is relevant.

API is not used to access the (large quantity) of content from
all known users after the second hop. Using this approach a
mixed network comprised of about 34 million known accounts
and over 100 million interactions was developed, with content
available from 26 thousand of these accounts in the form of
34 million tweets. A small fraction of this network is illustrated
using the 1-hop network shown in Figure 3.

As expected, much of this content is unrelated to the sub-
ject of cybersecurity, the area used to seed the network, and
the objective is to classify content that is relevant to the origi-
nal subject. The word clouds shown in Figure 4 illustrate the
relatively different subject matter of the content between seed
cybersecurity accounts and all accounts.

4.2. Performance

Figure 5 illustrates the precision-recall performance results of
the algorithm of Section 3 to the data described above. The
training set is comprised of 457 Twitter account labeled by the
authors with 127 positive examples and 330 negative examples.
Testing was performed on an independent labeled set comprised
of 26 positive and 57 negative examples (N = 83). To generate
a precision-recall curve we sweep through a classifier threshold
between zero and unity.

Classifier performance improves if the content of neighbor-
ing vertices is included in the feature vector. Precision-Recall
performance improvements of 20-30% are demonstrated with
this dataset (green and purple curves using ranges of 1-10/and
10-50 neighboring timelines, operating point of fixed 70% pre-
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Fig. 4. Word clouds of 70 cybersecurity accounts (above)
and 700 random accounts (below). Cybersecurity accounts
use specific technical jargon (e.g. “torservers,” “obfsproxy,’
“DNSSEC,” “IEEE”), whereas the random accounts use generic
language.

cision), compared to a baseline approach that does not exploit
homophily (dashed blue curve with no neighboring timelines).
This is indication that homophily network effects can help bias
the sampling process to the most relevant portions of the graph.
Figure 5 shows that there is a threshold of diminishing returns
beyond which adding more neighbor content does not lead to
improved classification performance. While the threshold it-
self is data specific, we expect this property to hold in general
settings, with the practical benefit that only a fraction of neigh-
bors are required for prioritization. These results provide more
evidence that online tight-knit affiliation communities consist
of only a very small fraction of declared online friendships/
connections.

5. CONCLUSIONS

A new approach for targeted graph sampling is proposed to ad-
dress the explosion of noise in online data collection systems.
The algorithm uses the task of vertex classification to drive the
graph sampling process towards a sample that is the most use-
ful for the task. The algorithm captures notions of relevancy by
training a classifier on a priori labeled data and exploiting the
notion of content-based homophily to achieve improved classi-
fication performance. Even though we demonstrate results with
online content generated features, the approach can be general-
ized to any vertex-based features. The performance of the algo-
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Fig. 5. Precision-Recall performance using a content and
network-based classifier.

rithm is measured with real network data and content observed
on a social media site. Precision-Recall performance improve-
ments of 20-30% are demonstrated with this dataset, compared
to a baseline approach that does not exploit homophily. Be-
cause real-world graphs grow exponentially, this performance
improvement may have a significant impact on graph analytic
algorithms with sensitivities to the graph sampling quality. As
part of future work, we plan to extend the approach to consider
additional content features, such as image and video based, as
well as retraining the classifier at intermediate steps with the
goal of improving classification performance.
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