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ABSTRACT

We consider the problem of recovering a smooth graph sig-
nal from noisy samples observed at a small number of nodes.
The signal recovery is formulated as a convex optimization
problem using Tikhonov regularization based on the graph
Laplacian quadratic form. The optimality conditions for this
optimization problem form a system of linear equations in-
volving the graph Laplacian. We solve this linear system via
the iterative Gauss-Seidel method, which is shown to be par-
ticularly well-suited for smooth graph signal recovery. The
effectiveness of the proposed recovery method is verified by
numerical experiments using a real-world data-set.

Index Terms— graph signal processing, compressed sens-
ing, Tikhonov-regularization, Laplacian solvers.

1. INTRODUCTION

The amounts of data collected by automated software and
hardware in various domains, such as social networks, bioin-
formatics and wireless sensor networks, are exploding. Be-
side the sheer volume of these data-sets also the high veloc-
ity (rate of generation) and their variety (data composed of
mixture of audio video text, only partially labeled) pose big
challenges on their processing. A particular useful method-
ology for coping with big data is provided by graph signal
processing (GSP), which models data-sets as signals defined
over large graphs (complex networks).

GSP can be viewed as a generalization of classical signal
processing [1]; the latter is obtained from GSP for the spe-
cial case of a chain graph (representing the sequence of time
instants). The usage of graph models within GSP entails ef-
ficient distributed message passing algorithms that are well
suited to deal with large volumes of high-speed data. More-
over, graphs allow to organize heterogeneous data by exploit-
ing application specific notions of similarity, thereby address-
ing the variety of big data.

A key problem studied in GSP is the recovery of a graph
signal from its noisy samples at few selected nodes. This
problem is relevant, e.g., for semi-supervised learning over
graphs, where only few training examples (represented by
graph nodes) are labeled and most examples are unlabeled.
The problem of determining the labels for the unlabeled data
is precisely a graph signal recovery problem. The recovery
is feasible for graph signals which are smooth with respect
to the graph, i.e., the signal values at neighboring nodes are
similar.

Several approaches to the graph signal recovery problem
have been put forward. Among them, graph signal recov-
ery method GSDAMP deals with incomplete measurements
and recovers the graph signal based on approximate message
passing [2]. Also, a wide family of graph recovery algorithms
are obtained by convex optimization methods. Based on these
methods, [3] provides a recovery solution through the alter-
nating direction methods of multipliers. Within this class
of recovery algorithms, methods based on Tikhonov regu-
larization using the graph Laplacian quadratic form are ap-
pealing since they amount to solving systems of linear equa-
tions involving the graph Laplacian. A recent line of research
demonstrates that such Laplacian systems can be solved ef-
ficiently using scalable algorithms whose complexity is only
linear in the number of edges of the underlying graph [4, 5].

Contribution: We formulate the graph signal recovery
problem as an optimization problem using Tikhonov regu-
larization to enforce smoothness of the recovered signal. The
optimization problem produces a signal balancing two terms:
the empirical error, i.e., the deviation of the recovered signal
from the observed noisy samples, and the signal smoothness
as measured by the graph Laplacian quadratic form. The op-
timal signal is characterized by a system of linear equations,
which we solve using a block variant of the iterative Gauss-
Seidel (GS) method. We relate the convergence properties of
this iterative method to the choice of the sampling set and the
graph topology. Furthermore, we apply our recovery method
to a real-world data-set containing a product rating of a large
online retailer. We find our recovery method allows for ac-
curate prediction of product ratings based on few manually
reviewed products.

Notation: Boldface lowercase letters denote column vec-
tors, whereas boldface uppercase letters denote matrices. We
denote the 2-norm of a vector x ∈ RN by ‖x‖2 =

√
xT x.

The cardinality of a finite set E is written as |E|. The identity
matrix of size M ×M is denoted IM or just I if the size is
clear from the context.

Outline: The rest of the paper is organized as follows:
We formalize the graph signal recovery problem in Section
2. The recovery algorithm based on the GS and block GS
(BGS) method is presented and discussed in Section 3. The
results of illustrative numerical experiments are presented in
Section 4.
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2. THE PROBLEM FORMULATION

Consider an undirected weighted graph G = (V, E ,W), with
node set V = {1, . . . , N} and edges set E ⊆ V × V . We
assume the graph to be simple, i.e., it does not have any self-
loops. Thus, (r, t) ∈ E implies r 6= t and (t, r) ∈ E (since the
edges are undirected). The non-negative entries Wr,t of the
symmetric weight matrix W ∈ RN×N quantify the strength
of the connections in the graph. In particular, Wr,t 6= 0 only
if (r, t) ∈ E , i.e., the support of the matrix W reflects the
edge structure of the graph G.

A graph signal x[·] : V → R defined on the graph G =
(V, E ,W) is a mapping (labeling) of the graph nodes to (with)
real numbers, i.e., each node r ∈ V is assigned a graph signal
value x[r] ∈ R. We will stack the graph signal values into a
vector x ∈ RN whose rth entry is the graph signal value x[r]
at node r ∈ V . The graph signals arising in many important
applications are smooth in the sense that the signal values
x[r], x[t] for neighboring nodes r, t ∈ V are similar, i.e.,

xr ≈ xt for (r, t) ∈ E . (1)

We measure the smoothness of a graph signal x by [6]

S(x) =
∑

(r,t)∈E

Wr,t(xr − xt)2 = xTLx . (2)

Here, we used the graph Laplacian matrix

L = D−W, (3)

with the diagonal degree matrix D whose rth diagonal ele-
ment is given by Dr,r =

∑
t∈VWr,t.

2.1. The Recovery Problem

We consider the problem of recovering a smooth graph signal
x0 from its noisy samples

yr = x0r + nr, r ∈ S (4)

observed at a (typically small) subset S ⊆ V of nodes. Let
us (without loss of generality) assume henceforth that S =
{1, . . . ,M}. By stacking the measurements yr into the vector
y ∈ RM , we use a the linear measurement model

y = Ax0 + n. (5)

The noise vector n = (n1, . . . , nM )T , modeled as addi-
tive white Gaussian noise (AWGN) with zero-mean and vari-
ance σ2, i.e., n ∼ N (0, σ2), summarizes the effect of mod-
eling and measurement errors. The measurement matrix
A ∈ RM×N represents the sampling process and is given
by

A =
(
IM 0M×(N−M)

)
. (6)

Each row of A corresponds to selecting the graph signal
value x0r for some r ∈ S. It should be noted that the spe-
cial form of (6) is not a strong restriction, as any set of M
(out of N ) graph signal components can be chosen by simple

re-labelling.
Our approach for recovering the true graph signal x0 from

the noisy samples yr (cf. (4)) is based on balancing the em-
pirical error

E(x̂) =
∑
r∈S

(yr − x̂r)2 = ‖y −Ax̂‖22, (7)

with the smoothness S(x̂) (cf. (2)) of the recovered signal x̂.
Thus, a natural recovery strategy is given by the optimization
problem

x̂ ∈ arg min
x∈RN

E(x) + λS(x)

= arg min
x∈RN

‖y −Ax‖22 + λxTLx. (8)

The parameter λ > 0 trades off empirical error E(x̂) against
smoothness S(x̂) of the recovered signal x̂.

The recovery problem (8) is a convex optimization prob-
lem, whose optimal points x̂ are characterized by the linear
equation

(ATA+ λL)x̂ = ATy. (9)

As the notation in (8) indicates, there might be different opti-
mal points x̂. For the graph G with K connected components
Cl, a necessary and sufficient condition for the existence of
a single unique optimal point x̂ of the optimization problem
(8) is when the sampling set S contains at least one node
rl, l = 1, . . . ,K, from each connected component Cl of the
graph G.

To obtain a more compact form of (9), we rewrite it ac-
cording to

Cx = b (10)

with the system matrix C := ATA + λL and the vector
b = ATy. The off-diagonal entries of C are given byCr,j =
−λWr,j (cf. (3)), whereas the diagonal entries are given by

Cr,r =

{
1 + λDr,r for r ∈ S
λDr,r for r /∈ S.

(11)

The vector b in (10) with support supp(x) = S, con-
tains the noisy graph signal samples yr (cf. (4)), i.e., b =
(y1, . . . , yM ,0)

T . In what follows, we will consider graph
signals defined over connected graphs. This does not incur
any loss of generality. Indeed, if the graph is composed of
several not interconnected sub-graphs, the recovery problem
(8) and the associated linear system of equations (10) would
split into independent sub-problems, one for each sub-graph.

3. EFFICIENT ITERATIVE GRAPH SIGNAL
RECOVERY

In order to obtain the recovered signal x̂, we have to solve
a system of linear equations. A basic iterative method to
solve large systems of linear equations such as (10) is the
Gauss-Seidel (GS) method [7]. In particular, the GS method
constructs a sequence x(t) by iterating, for t = 1, 2, . . . , the
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following node-wise updates, for r = 1, 2, . . . , N.

x(t)r = (1/Cr,r)
(
br−

r−1∑
j=1

Cr,jx
(t)
j −

N∑
j=r+1

Cr,jx
(t−1)
j

)

=


1

1+λDr,r

(
yr−

r−1∑
j=1

Wr,jx
(t)
j −

N∑
j=r+1

Wr,jx
(t−1)
j

)
if r ∈ S

1
λDr,r

( r−1∑
j=1

Wr,jx
(t)
j −

N∑
j=r+1

Wr,jx
(t−1)
j

)
if r /∈ S

(12)

We stress that the order of the updates (12) for the compo-
nents x(t)r is important: first, we update x(t)1 , then x(t)2 and
so on, i.e., those graph nodes are updated first, for which
measurements are available (see (6)). As to the convergence
of the resulting sequence x(t), we note the following result
from [8]: Given that we have a regular (invertible) system
matrix C in (10), it is known from [8] that the GS algorithm
will converge to the unique solution x̂, if for the recursively
defined numbers

pr =

r−1∑
j=1

|cr,j |
|cr,r|

pj +

N∑
j=r+1

|cr,j |
|cr,r|

for r = 1, 2, ..., N ,

(13)

the condition (
max

r=1,2,...,N
pr

)
< 1 (14)

is fulfilled (pr ≥ 0 because all terms in (13) are non-
negative); also

cr,r 6= 0 , for r = 1, 2, ..., N, (15)

holds because of (11) and the weights being non-negative.
The Block Gauss-Seidel (BGS) method [9, Chap 10] gen-

eralizes the GS method by updating during each iteration
whole blocks of the current estimate x(t) in one step instead
of single entries (as in (12)), which allows for parallel compu-
tations and, hence, significant increase in speed, even though
the complexity of one update step may appear to be higher
for BGS in general. However, a major advantage of BGS is
that it typically requires fewer iterations to reach a given so-
lution accuracy. The BGS method is based on partitioning
the system matrix C, solution vector x and vector b of (10),
into p blocks according to

C =


C11 C12 . . . C1p

C21 C22 . . . C2p

...
...

. . .
...

Cp1 Cp2 . . . Cpp

 ,x =


x1

x2

...
xp

 ,b =


b1
b2
...
bp


(16)

The iterations for the BGS method for solving (10) are de-
fined by generalizing (12); the scheme is stated in Algo-
rithm 1.

With respect to convergence of the algorithm we consider

Algorithm 1 Smooth graph signal recovery via BGS

1: Input: x0 ← 0, C = ATA + λL (cf. (6), (3)), t = 0,
noisy samples {yr}r∈S , sampling set S and parameter λ

2: repeat
3: for r=1:p do
4: b̃← (b)r−

∑r−1
j=1 Crjx

(t)
j −

∑N
j=r+1 Crjx

(t−1)
j

5: Solve Crrx̂r = br using (12) to obtain x(t)r
6: end for
7: t← t+ 1
8: until the stopping criterion is met.
9: Output: recovered graph signal x̂ = x

(t−1)
r

the coefficient matrix C in equation (10): its diagonal entries
are obtained from (11) and its off-diagonal entries are given
by Cr,j = −λWr,j . With the definition of irreducibly di-
agonally dominant matrices from [7, Def 4.5], the rth row
of the matrix C is either strictly dominant for r ∈ S , as∑
j∈V,r 6=j | λWrj |< 1 + λDrr, or weakly dominant for

r /∈ S , as
∑
j∈V,r 6=j | λWrj |≤ λDrr. This makes the ma-

trix C irreducibly diagonally dominant. From [7, Theorem
4.9], if the matrix C is an irreducibly diagonally dominant
matrix, then x̂ generated by Algorithm 1 converges to the
unique solution.

4. NUMERICAL RESULTS

In order to asses the BGS, we compared the performance
of the recovery method given by Algorithm 1 with the in-
complete Cholesky factorization conjugate gradient (ICCG)
method [10, Chap 10] in the context. The convergence rate
of conjugate gradient (CG) method depends on the condition
number of the matrix C but unfortunately the matrix C is of-
ten ill-conditioned, i.e., it has large condition number.

In order to asses the accuracy of the Algorithm 1, we ap-
plied it to a real-world product rating data-set, which was
collected by crawling the website of a large Internet-based
retailer [11]. This data-set consists of rating information of
four different product categories: books, music CDs, DVDs
and video tapes. The products are represented by the nodes
of the graph. The nodes representing two particular products
are connected by an edge if they are co-purchased often. Each
product is assigned a rating taking on values in the set 1/2{0,
1,. . . , 9, 10}. We then obtain a graph signal x0 by setting its
value at node r to the average of all ratings for the product
r. The graph of the raw data contained isolated nodes and
several small components. We selected the largest connected
subgraph G for our numerical experiments. In this graph there
are N = 290744 nodes and |E| = 729048 edges. We omitted
edge directions to obtain an undirected graph. We randomly
selected M signal samples xr and added zero-mean AWGN
noise with variance σ2. Thus we obtain a measurement vec-
tor y conforming to the model (5).

In order to recover x0 from the noisy measurements (4),
we applied Algorithm 1 using a partitioning of the graph into
p = 8 blocks of equal size. The stopping criteria used for
Algorithm 1 was either it reaches the maximum number of 20
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Table 1. NMSE of the BGS and ICCG algorithms.

BGS ICCG
σ2 = 0 σ2 = 4 σ2 = 0 σ2 = 4

SR=0.1 0.1472 0.1743 0.1469 0.1744
SR=0.2 0.1307 0.1671 0.1308 0.1674
SR=0.3 0.1151 0.1590 0.1148 0.1590
SR=0.4 0.0996 0.1500 0.0997 0.1502
SR=0.5 0.0846 0.1414 0.0846 0.1414
SR=0.6 0.0699 0.1329 0.0698 0.1328
SR=0.7 0.0552 0.1244 0.0552 0.1242
SR=0.8 0.0407 0.1158 0.0406 0.1157
SR=0.9 0.0263 0.1072 0.0263 0.1073

iterations or the relative progress ‖x
(t)−x(t−1)‖2
‖x(t)‖2

≤ 10−3. We
ran Algorithm 1 for different values of λ, via the simulations,
and set λ = 0.1 which yields good performance in terms of
the normalized mean square error (NMSE), NMSE = ‖x−x̂‖2‖x‖2 .

We analyzed the effect of different noise levels σ2 and
varying sampling rates (SR)M/N on the NMSE of the Algo-
rithm 1. The results obtained for Algorithm 1 together with
those obtained for an alternative method, based on incom-
plete Cholesky factorization preconditioned conjugate gradi-
ent are shown in Table 1. As evident from Table 1 both BGS
and ICCG show good recovery performance even for very
low SR M/N and high noise variance σ2. What is also evi-
dent from Table 1, ICCG and BGS do not show much differ-
ence in NMSE. Table 1 indicates that the noise variance σ2

has negligible effect on NMSE, specially for lower SR’s.
Another figure of merit, beside the NMSE, is the label re-

covery ratio (LRR) aη (17) defined as the fraction of nodes
r ∈ V, for which the recovery error |xr− x̂r| does not exceed
the threshold η, i.e.,

aη =| {r ∈ V, | xr − x̂r |≤ η} | /N. (17)

Here η ∈ 1/2 {0, 1, 2, . . . , 10}, since the rating of the prod-
ucts come from the set 1/2 {0, 1, 2, . . . , 10} we round the
value of recovered signal to the nearest signal value in the
set. In (17), xr is the original signal value at node r, x̂r is the
recovered signal value.

The LRR of BGS obtained for Algorithm 1 for varying
M/N and noise variance σ2 is shown in Fig. 1 and Fig. 2, re-
spectively. In both figures, the solid lines show the LRR a0,
the dotted lines show the LRR a1/2 and the dashed lines the
LRR a1. From Fig. 1 we have that, for SR M/N = 0.2 and
σ2 = 0, the algorithm is able to recover the correct ratings of
more than 29% of the products (a0 ≥ 0.29). If we accept the
maximum error threshold η = 1/2, the algorithm recovers
60% of the graph values (a1/2 ≥ 0.6) and for the thresh-
old η = 1, it recovers more than 76% of the graph values
(a1 ≥ 0.76). For noise variance σ2 = 4, the recovery perfor-
mance deteriorates to a0 = 0.19, a1/2 = 0.47 and a1 = 0.66.
As expected, the LRR of the BGS algorithm improves for
increasing SR. Beside, the LRR curve for noise variance
σ2 = 0 is much steeper compared to σ2 = 4. The effect of
increasing SR is less pronounced for higher noise variance.
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Fig. 1. LRRs (a0, a1/2, a1) of Algorithm 1 for varying M/N
and noise variance σ2 ∈ {0, 4}.
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Fig. 2. LRRs of Algorithm 1 (a0, a1/2, a1) for noise variance
σ2 and SR M/N ∈ {0.2, 0.4, 0.8}.

In Fig. 2, we illustrate the recovery performance over noise
variance σ2 for three different SR M/N ∈ {0.2, 0.4, 0.8}.
Again, incrementing the noise level harms the recovery per-
formance. We observe that ICCG and BGS deliver similar re-
covery performance, so we only show the results of the BGS
in the figures.

5. CONCLUSION

We formulate the problem of recovering a smooth graph sig-
nal from a small number of noisy samples as a convex opti-
mization problem which, in turn, amounts to solving a system
of linear equations involving the graph Laplacian. An effi-
cient recovery method for smooth graph signals is then ob-
tained by applying a BGS method to this Laplacian system.
The effectiveness of the proposed recovery method is verified
by numerical experiments via a real-world data-set contain-
ing product ratings of a large Internet-based retail shop.
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