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ABSTRACT

Modelling and forecasting of asset volatility and covariance
is of prime importance in the construction of portfolios. In
this paper, we present a generalised multi-factor model that
incorporates heteroskedasticity and dependence in the idio-
syncratic error terms. We apply this model to forecasting the
time-varying covariances in a basket of high interest rate and
a basket of low interest rate carry trade currencies and then
utilise these forecasts for portfolio optimisation. We compare
traditional Markowitz portfolio optimisation to the more re-
cently popular risk-based portfolio optimisation. Our model
is shown to provide superior risk-adjusted returns for a cur-
rency carry trade strategy over the period 1999 - 2014.

Index Terms— Covariance Forecasting, Currency Carry
Trade, Covariance Regression, Markowitz Portfolio, Equal
Risk Contribution

1. INTRODUCTION

Understanding the behaviour of currency markets has been an
active area of research for the past few decades. Much of the
literature has focused on the marginal behaviours of exchange
rates and carry trade portfolio returns resulting from the es-
tablished violations of uncovered interest rate parity. Such
investment strategies are popular approaches which involve
constructing portfolios by selling low interest rate currencies
in order to buy high interest rate currencies, thus profiting
from the interest rate differentials. When such portfolios are
highly leveraged this can result in sizeable profits. The pre-
sence of such opportunities, pointed out by [1, 2, 3] and more
recently by [4, 5, 6, 7, 8, 9, 10], violates the fundamental re-
lationship of uncovered interest rate parity (UIP). The UIP
refers to the parity condition in which exposure to foreign
exchange risk, with unanticipated changes in exchange ra-
tes, is uninhibited and therefore changes in the exchange rates

should offset the potential to profit from the interest rate diffe-
rentials between high interest rate (investment) currencies and
low interest rate (funding) currencies. We briefly introduce
the definition of covered and uncovered interest rate parity.
The UIP condition is directly linked to the arbitrage relation
existing between the spot and forward prices of a given cur-
rency, namely the covered interest rate parity (CIP) condition.

Definition 1.1. Covered Interest Rate Parity (CIP)
This relation states that the forward price at time t of one unit
of foreign currency against the base currency (which here is
the US dollar) with maturity T can be expressed as:

FTt = e(rt,T−rft,T )(T−t)St, (1.1)

where St denotes the price of one unit of foreign currency at
time t (spot price). While rt,T and rft,T represent the domes-
tic1 and foreign risk free interest rate yields for maturity T .
The CIP condition states that one should not be able to make
a risk free profit by selling a forward contract and replicating
its payoff through the spot market.

It is worth emphasizing that under the hypothesis of an
absence of arbitrage opportunities, the CIP relation is directly
resulting from the replication of the forward contract payoff
using a self financed strategy. Moreover, the validity of this
arbitrage relation has been demonstrated empirically in the
currency market by [11, 12] when one considers daily data.
From this arbitrage relation follows the UIP condition.

Definition 1.2. Uncovered Interest Rate Parity (UIP)
Considering Equation 1.1 the UIP condition can be defined
as:

E

[
ST
St

∣∣∣∣∣Ft
]

=
FTt
St

= e(rt,T−rft,T )(T−t), (1.2)

1Domestic risk free yield means the interest rate yield in the reference
country, which would be for instance the dollar for an American investor.
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where Ft is the filtration associated to the stochastic process
St. The UIP equation indeed states that the expected varia-
tion of the exchange rate St should equal the differential of
interest rate between the two countries.

The existence of the UIP relationship is related to two pri-
mary assumptions, which are capital mobility and perfect sub-
stitutability of domestic and foreign assets. When UIP holds,
then given foreign exchange market equilibrium, the interest
rate parity condition implies that the expected return on do-
mestic assets will equal the exchange rate-adjusted expected
return on foreign currency assets. Therefore, no arbitrage op-
portunities should arise in practice; however such opportuni-
ties are routinely observed and exploited by large volume tra-
ding strategies. Numerous empirical studies [2, 1, 13, 4] have
previously demonstrated the failure of UIP, i.e. that investors
can actually earn profits by borrowing in a country with a lo-
wer interest rate, exchanging for foreign currency, and inves-
ting in a foreign country with a higher interest rate.Therefore,
it is believed that trading strategies that aim to exploit the in-
terest rate differentials may be profitable on average. In this
paper we study how to identify trading strategies and portfolio
selection to exploit violation of UIP in carry trades.

2. COVARIANCE REGRESSION MODEL

We introduce a new covariance regression model, termed the
Generalised Multi-Factor model, which extends the traditio-
nal Multi-Factor model by allowing the factors to appear in
the covariance of the idiosyncratic error terms and thus pro-
duce a more flexible model that is capable of capturing hete-
roskedasticity in the error terms and hence in both the uncon-
ditional and conditional covariance matrices. Weekly carry
returns are defined as Rt = (FTt /F

T
t−1) − 1, i.e. we use a

weekly mark-to-market procedure to calculate the relative re-
turn on each currency position (see [14]). In order to capture
the heteroskedastic effects of the covariates on the covariance
of the currency carry returns,Rt, we use the following model:

Rt = α+ βXt + et , (2.1)

where N := number of currencies,
K := number of covariates,
Rt := N-dimensional carry returns in basket,
α := N-dimensional constant,
β := N-by-K-dimensional matrix of mean covariate loadings,
Xt := K-dimensional vector of covariate values,
et ∼ N (0,CXtX

T
t C

T +Ψ) are the N-dimensional errors,
C := N-by-K matrix of covariate loadings,
Ψ := N-by-N baseline covariance of the errors et.
Then unconditional covariance matrix is given by:

Cov(Rt) = βCov(Xt)β
T +CXtX

T
t C

T + Ψ , (2.2)

and the conditional covariance matrix is given by:

Cov(Rt|Xt) = CXtX
T
t C

T + Ψ . (2.3)

We observe that the heteroskedasticity in the conditional co-
variance is given by the covariance of the error terms et.

Remark 2.1. In this paper, the following covariates are used:
DOL, HMLFX , σDOL, σHML and σDOL,HML. DOL is
the return an investor would earn by being long all curren-
cies against the USD dollar. HMLFX is the return an in-
vestor would earn by being long the high interest rate bas-
ket and short the low interest rate basket. σDOL and σHML

are the volatilities of the DOL and HMLFX respectively.
σDOL,HML is the covariance of the DOL and HMLFX .

3. ESTIMATION VIA RANDOM-EFFECTS
REPRESENTATION

To perform estimation it is convenient to formulate our
covariance regression model as a special type of random-
effects model, see [15], for observed data R1, . . .RT (N -
dimensional basket weekly carry returns of length T weeks).

Rt = α+ βXt + γt ×CXt + εt ,

E[εt] = 0 , Cov(εt) = Ψ ,

E[γt] = 0 , V ar[γt] = 1 , E[γt × εt] = 0.

(3.1)

Step 1: Mean De-trending of Returns. The first step is to
perform the mean-regression, via in our case a standard linear
regression model. This will allow us to obtain zero-mean re-
siduals êt, given by êt = Rt − α̂ − β̂Xt, where β̂ is the
vector of mean regression loading estimates.
Step 2: Covariance Regression of Mean-Detrended Re-
turns. Next, perform the covariance regression of these resi-
duals on the factors, using the random-effects representation:

êt = γt ×CXt + εt , (3.2)

The conditional covariance matrix for êt is then given by,

ΣXt
:= E[êtê

T
t |Xt]

= E[γ2tCXtX
T
t C

T + γt(CXtε
T
t + εtX

T
t C

T ) + εtε
T
t |Xt]

= CXtX
T
t C

T + Ψ. (3.3)

This random-effects model allows us to perform the maxi-
mum likelihood parameter estimation of the coefficients, C
and Ψ, via the Expectation Maximization (EM) algorithm.
We proceed by iteratively maximising the complete data log-
likelihood of Ê = ê1, . . . , êT denoted l(C,Ψ), which is
obtained from the multivariate normal density given by:

−2l(C,Ψ) =TN log(2π) + T log|Ψ|+ (3.4)
T∑

t=1

(êt − γtCXt)T Ψ−1(êt − γtCXt).

We note that the conditional distribution of the random ef-
fects given the data and covariates is then conveniently gi-
ven by a normal distribution in each element according to
{γt|Ê,X,Ψ,C} = N (mt, vt) with mean given by mt =

vt(ê
T
t Ψ−1CXt) and variance vt = (1 +XT

t CTΨ−1CXt)
−1.
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The advantage of this random effects specification of the co-
variance regression is that taking the conditional expectation
of the complete data log likelihood, with respect to the con-
ditional distribution of the random effect parameters γt, one
obtains a closed form expression for the Expectation E-step.
In addition, expressions for the maximization step (m-step)
are also attainable in closed form, see details in [15].

4. FORECASTING COVARIANCE USING
COVARIATE TIME SERIES FORECASTS

In this section, we present the method utilised to obtain fo-
recasts of the returns covariance matrix. In order to obtain
forecasts of the covariance of the carry returns we need to
forecast the covariates vector X . To do so, we use the
Hyndman-Khandakar algorithm for automatic SARIMA mo-
delling as implemented in the auto.arima function in the R
forecast package [16], see [17] for details. We then assess the
accuracy of the forecasts using the Mean absolute scaled er-
ror (MASE) as given in Definition 4.1 and introduced in [18].
The MASE measure scales the error based on the in-sample
MAE from the naı̈ve (random walk) forecast method and thus
allows the comparison of time series on different scales and
is also robust to values close to zero.

Definition 4.1. Mean Absolute Scaled Error (MASE)

MASEτ =
1

τ

τ∑
t=1

(
ẽt

1
n−1

∑n
i=2 |Xi −Xi−1|

)
(4.1)

where the numerator ẽt is the forecast error at time t, defi-
ned as the actual value (Xt) minus the forecast value (X̂t)
for that period, i.e. ẽt = Xt − X̂t, and the denominator
is the average in-sample forecast error of the one-step naı̈ve
(random walk) forecast method, which uses the actual value
from the prior period as the forecast, i.e. X̂i = Xi−1.

Given forecasts of the covariate time series, we forecast
the τ -step ahead unconditional covariance matrix:

1. Fit Generalised Multi-Factor Model to the data period
[t − L : t] via the method in Section 3 to obtain para-
meter estimates β̂, Ψ̂ and Ĉ. L = 125 data points.

2. Forecast τ -step ahead covariate values, X̂t+τ for each
covariate individually, as described by the SARIMA fo-
recasting method in [17].

3. The τ -step ahead covariance matrix is calculated as:
Ĉov(Rt+τ|t) = β̂Cov(X̂t+τ|t)β̂

T + ĈX̂t+τ|tX̂
T
t+τ|tĈ

T + Ψ̂ .

and the conditional covariance matrix forecast:

Ĉov(Rt+τ |t|X̂t+τ |t) = ĈX̂t+τ |tX̂
T
t+τ |tĈ

T + Ψ̂ .

5. PORTFOLIO OPTIMISATION

We compare the traditional Markowitz mean-variance frame-
work [19] to the recent Equal Risk Contribution approach in-
troduced in [20]. There are a number of related papers from
within the signal processing community, such as [21] in which
a novel portfolio mixing method via weight shrinkage is pro-
posed. Here, we consider the long and short baskets sepa-
rately in the portfolio optimisation procedures below. The
long or short basket returns are the weighted sums of the in-
dividual currency returns within each basket, i.e. RBaskett =∑d
i=1 wt,iRt,i, for currencies i = 1, . . . , d in the basket.

5.1. Markowitz Mean-Variance Optimal Portfolio

We briefly recall the general closed-form Markowitz frame-
work for calculating the optimal portfolio weights in the un-
constrained case, i.e. when weights w are allowed to be ne-
gative. The following derivation is for a generic covariance
matrix Σ. Thus, if we want to use the conditional covariance
we use Σ as in Equation 2.3. However, if we are interested in
the unconditional covariance (as in standard Markowitz opti-
misation) then we use Σ as in Equation 2.2. We seek to solve
the following unconstrained optimisation problem:

min
w

σ2
p,w = wTΣw s.t. (5.1)

µp = wTµ = µp,0 , and wT 1 = 1 .

This is achieved via a Lagrangian producing first order condi-
tions for a minimum which are linear equations with solution:

zw = A−1b0 , with (5.2)

A =

2Σ µ 1
µT 0 0
1T 0 0

 , zw =

wλ1

λ2

 and b0 =

 0
µp,0

1

 .

Note that the first d elements of zw are the optimal portfolio
weightsw = (w1, . . . , wd) for the minimum variance portfo-
lio with expected return µp,w = µp,0. If µp,0 is greater than or
equal to the expected return on the global minimum variance
portfolio then w is an efficient portfolio. In our case we need
to constrain the weights of the currencies to be positive in the
long basket and negative in the short basket. For this constrai-
ned case, there is no closed form solution available and so we
utilise a quadratic programming approach. See [22, 23] for
detailed references. We select the Markowitz portfolio with
the maximum Sharpe ratio, i.e. return/volatility ratio.

5.2. Equal Risk Contribution Portfolio

Due to the high sensitivity of mean-variance portfolio optimi-
sation approaches to the input parameters, and in particular
to the expected returns, risk-based techniques have arisen as
an alternative, the example we consider is Equal Risk Con-
tribution (ERC), see [20]. Each asset contributes equally to
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the total portfolio variance. A more general approach to risk-
based portfolio construction can be seen in [24, 25].

Definition 5.1. Equal Risk Contribution Portfolio (ERC)

w
?

= {w ∈ [0, 1]
N

:
∑

wi = 1, wi × ∂wiσ(w) = wj × ∂wjσ(w) ∀i, j}
(5.3)

where ∂wiσ(w) = ∂σ(w)
∂wi

and σ(w) =
√
wTΣw.

Noting that ∂wiσ(w) ∝ (Σw)i, where (Σw)i denotes the
i-th row of the vector issued from the product of Σ with w,
we have the following optimisation problem:

w
?

= {w ∈ [0, 1]
N

:
∑

wi = 1, wi×(Σw)i = wj×(Σw)j ∀i, j} (5.4)

This problem can be solved using a Sequential Quadratic Pro-
gramming (SQP) algorithm, see details in [20].

6. CURRENCY PORTFOLIO ANALYSIS

We consider for our empirical analysis a carry trade portfolio
consisting of a long basket and a short basket. The long basket
contains four major “investment” currencies, namely United
Kingdom (GBP), Australia (AUD), Canada (CAD) and New
Zealand (NZD), while the short basket contains three major
“funding” currencies, as in [5], namely Euro (EUR), Japan
(JPY) and Switzerland (CHF). We have considered daily sett-
lement prices for each currency exchange rate as well as the
daily settlement price for the associated 1 month forward con-
tract in order to derive the weekly carry trade mark-to-market
returns, Rt. The daily time series analysed were obtained
from Bloomberg and range from 04/01/1999 to 29/01/2014.

6.1. Covariate SARIMA Forecast Results

The MASE forecast accuracy results suggest that on average
all five of the covariates have reasonable forecast perfor-
mance. However, we note that the DOL and HML co-
variates are very close to white noise and hence the naı̈ve
in-sample forecasting method is very poor. Thus, if we also
look at the Mean Absolute Percentage Error (MAPE) we see
that the DOL and HML have median MAPEs of 99% whe-
reas the σDOL, σHML and σDOL,HML have median MAPEs
of 11%, 13% and 21% respectively. However, it is noticeable
that for the σDOL, σHML and σDOL,HML there are periods
of poor forecast performance, e.g. the 2008 Financial Crisis.

6.2. Portfolio Risk and Performance

The portfolio performance and risk of the four different ap-
proaches are presented in Figure 1 and in Tables 1 and 2.
Here, we re-optimise the portfolios on a monthly basis using
an annual portfolio volatility target of 15% and hence scale
the monthly returns according to the expected portfolio vo-
latility for each method. We assume that we initially capita-
lise the strategy to the value of the unleveraged baskets. The
Sharpe ratio is defined as return divided by volatility. The

Sortino ratio is the return divided by downside volatility. The
Omega ratio is the probability weighted ratio of gains ver-
sus losses. Max DD is the maximum decline from historical
peak. It can be seen that the traditional Markowitz approach
is much improved when using our forecasting approach. The
ERC approach is also slightly improved by incorporating the
heteroskedastic covariance forecast.
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Fig. 1. Forecasted vs Historical. Markowitz vs ERC.

Table 1. Markowitz Carry Portfolio Monthly Risk Measures.
Risk Measure Forecast Cov. Historical Cov.

Sharpe 0.047 0.019
Sortino 0.068 0.026
Omega 1.142 1.058

Max DD 33.6% 40.3%

Table 2. ERC Carry Portfolio Monthly Risk Measures.
Risk Measure Forecast Cov. Historical Cov.

Sharpe 0.082 0.076
Sortino 0.116 0.107
Omega 1.269 1.252

Max DD 42.9% 44.6%

7. CONCLUSIONS

In this paper, we present the Generalised Multi-Factor mo-
del, which incorporates the factors into the covariance of the
idiosyncratic error term and hence allows for heteroskedastic
covariance. We utilise this model in the setting of forecas-
ting currency carry trade returns and covariances. Two port-
folio optimisation approaches are considered: Markowitz and
Equal-Risk Contribution. Equal-Risk Contribution is shown
to outperform the Markowitz approach on all measures ex-
cept for the maximum drawdown. We note that when some
or all of the expected returns are negative then the Markowitz
weights are concentrated to the point of excluding the curren-
cies with the most negative expected returns. Our Generali-
sed Multi-Factor model is shown to provide an improvement
to the performance and risk characteristics of the portfolios.
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