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ABSTRACT

We present the concept of logarithmic computation for
neural networks. We explore how logarithmic encoding of
non-uniformly distributed weights and activations is preferred
over linear encoding at resolutions of 4 bits and less. Loga-
rithmic encoding enables networks to 1) achieve higher clas-
sification accuracies than fixed-point at low resolutions and
2) eliminate bulky digital multipliers. We demonstrate our
ideas in the hardware realization, LogNet, an inference engine
using only bitshift-add convolutions and weights distributed
across the computing fabric. The opportunities from hard-
ware work in synergy with those from the algorithm domain.

Index Terms— Neural networks, logarithmic computa-
tion, approximate computing, hardware-software co-design

1. INTRODUCTION

Convolutional neural networks (CNN) have demonstrated
state-of-the-art performance in image classification [1, 2, 3]
but have steadily grown in computational complexity. For ex-
ample, VGG16 [2] and Deep Residual Learning [3] networks
require 563 and 230 MB of memory to store weights in 32-bit
resolution. In order for these large networks to run inference
in mobile and real-time embedded systems, it is often times
necessary to quantize weights and activations.

Recently, researchers have deployed networks that com-
pute using 8-bit fixed-point representation [4, 5] and have suc-
cessfully trained networks with 16-bit fixed point [6]. The
works of [7, 8, 4, 9] analyzed the effects of quantizing the
trained weights for inference. For example, [10] shows that
convolutional layers in AlexNet [1] can be encoded to as little
as 5 bits without a significant accuracy penalty. There has also
been recent work in training using low precision arithmetic.
For example, [6] proposes a stochastic rounding scheme to
help train networks using 16-bit fixed-point, and [11] pro-
poses quantized back-propagation and ternary connect. How-
ever, their method does not completely eliminate all multi-
plications end-to-end. The work [12] illustrates advantages
of encoding activations in the log domain. Our work extends
these ideas by showing that log is a superior encoding scheme
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Fig. 1. Low-precision encoding of conv2 1 layer in VGG16
(a) that illustrates conventional linear (left) versus MSE-
optimal (middle) and proposed logarithmic (right) encoding
boundaries. The LogNet engine (b), and the hardware real-
ization on the VC707 FPGA board (c).

to linear that achieves high classification performance and low
hardware complexity for resolutions of 5 bits and lower.

There have been a few but significant advances in the
development of specialized hardware of large networks. For
example, the works of [13, 14, 15, 16] developed Field-
Programmable Gate Arrays (FPGA) and application-specific
integrated circuit (ASIC) implementations for convolutional
layers. The EIE ASIC [17] exploits sparse-weights for fully-
connected layers. Many of these works use fixed and floating-
point operations and access data using off-chip DRAM, which
can be 1000× more expensive in energy consumption than
a memory access to on-chip SRAM [18]. Our hardware re-
alizations exploits low-precision log2 4b encoded weights,
low-precision activations, spatial locality for convolutions,
and distributed weights stored across the FPGA fabric.

2. THEORY

Convolutional and fully-connected (FC) layers in a network
performs the atomic operations y = σ(wTx), where x ∈ Rn
is the input (the activations from the previous layer), w ∈ Rn
the weights for the specified inputs, σ the nonlinear activa-
tion function (e.g. ReLU), and y the activation to the next
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layer. In hardware, this requires n multiply-add operations.
For energy-efficient inference, linear fixed-point at 8b (int8)
is commonly used; any further decrease in resolution usually
results in large classification errors. In the range of resolu-
tions between 1 and 5b in the context of inference for neural
networks, we argue that logarithmic base-2 encoding (log2) is
preferred over linear fixed-point.

For any modality, an ideal number w ∈ R is encoded
as a discrete element in a finite set of size 2N , where
N is the resolution or bitwidth of w. For example us-
ing linear fixed-point, the discrete set is arranged with
2N equidistant boundaries. A conversion from w to its
fixed-point representation is described by the operation
LinearQuant(w) = projΩ(w) that projects w ∈ Rn onto
Ω = {min,min + ∆LSB, . . . ,max}n, a lattice with 2N

boundaries per element in w. The variables min and max
are user-defined, and least-significant bit step-size is denoted
as ∆LSB = (max − min)/2N . We also define the full-scale
range as FSR = log2{max − min} in logarithmic scale for
notational convenience. To quantize the non-negative acti-
vations, we define quantization of x that is used through-
out our experiments specifically as LinearQuant(x) =

ClipLinear
(

Round
(

x
∆LSB

)
×∆LSB, 0, 2

FSR −∆LSB

)
, in

which ∆LSB = 2FSR−N , and ClipLinear(x,min,max) =
min · 1(x < min) + max · 1(x ≥ max) + x · 1(min ≤
x ≤ max). Round(x) means to round x to the nearest in-
teger, and 1(a) = 1 if the condition a is true and 0 else.
Logarithmic quantization of x throughout this paper is de-
scribed by LogQuant(x) = α · Sign(x)2x̃ · 1(x 6= 0), where
x̃ = ClipLog

(
Round(log2(|x|)),FSR− 2N ,FSR− 1

)
and

ClipLog(x,min,max) = max · 1(x ≥ max) + x · 1(min ≤
x ≤ max). The use of α is used to adjust the dynamic range
of the sum of multiply-add operations for the activations if
needed; because this constant scaling acts unilaterally on all
elements of x, α can be easily absorbed to the next layer
(until the very end) in the network or simply removed.

In our paper, the simulations and hardware currently add
in the linear domain even when multiplied in log. How-
ever, if non-negative activations are encoded in log, we can
compute the output activations completely in log. For exam-
ple, suppose the output activation that we wish to compute
is sn = w1x1 + . . . + wnxn, and s̃n = log2(sn), p̃i =
w̃i + x̃i. Assume the weights are also positive. When n = 2,
s̃2 = log2

(∑2
i=1 Bitshift (1, p̃i, 1)

)
' max (p̃1, p̃2) +

Bitshift (1,−|p̃1 − p̃2|, 1). For n in general, the summation
is monotonically non-decreasing with n and is approximated
by s̃n ' max (s̃n−1, p̃n) + Bitshift (1,−|bs̃n−1c − p̃n|, 1).
Since xi ≥ 0, we only need to ensure that the weights in
sn are of the same sign, otherwise we require two isolated
computations: 1) negative weights: s̃n− = log2(wTΣ(−)x)
where Σ(−) = diag(1(w1 < 0) , · · · ,1(wn < 0)) and 2)
positive weights: s̃n+ = log2(wTΣ(+)x) before computing
sn+ + sn− by a logarithmic approximation.

We compare these log and linear quantizers in their abil-
ities to encode weights and activations of a CNN. We show
in Fig. 1(a) the 8 quantization boundaries of linear fixed-
point superimposed with the ideal, unquantized weights of
a convolutional layer in the fully-trained VGG16 network.
The optimal quantization strategy depends upon the distribu-
tion of w. For most machine learning algorithms including
CNNs, we usually add L2 regularization in training, which 1)
encourages gradients to push weights closer to 0 with force
proportional to |w| and 2) is equivalent to setting a Gaussian
prior on weights w. Other regularizers such as L1 (Laplacian
prior) also distributes the weights non-uniformly and encour-
ages sparse weights. This idea hints at ways to efficiently
encode non-uniform weights rather than conventional linear
encoding.

3. SIMULATIONS

To evaluate the rate of distortion induced by quantization, we
compute the metric ||W − Quant(W )|| for various quan-
tization strategies. The optimal strategy that minimizes
||W − Quant(W )||2 is Lloyd quantization and is shown in
Fig. 1(a,middle). The MSE-optimal boundaries are densely-
packed near 0 to encode regions with higher occurrence.
However, arbitrarily-variable step-sizes are difficult to real-
ize in digital hardware. Using log2 representation in Fig.
1(a,right) on the other hand, we can achieve decision bound-
aries that are both close to MSE-optimal but can also be
easily realized in digital. However, it is not always the case
that log2 is always better than linear. The optimal strategy
strongly depends on the resolution. As shown in Fig. 2, log
encoding leads to both lower normalized MSE (NMSE) and
less accuracy degradation in VGG16 (with all other layers en-
coded in floating-point) than does linear at 4b and lower. For
higher resolutions however, linear encoding is more accurate
in representing values that are close to the full-scale range of
the quantizer.

We evaluate linear and logarithmic encoding strategies on
the weights and activations and use classification accuracy
(top-5) as the main performance metric using the classifica-
tion task of ILSVRC-2012 [19] using Tensorflow [5], Caffe
[20], and Chainer [21]. For these experiments, we use pub-
lished models (AlexNet [1], VGG16 [2]) from the caffe model
zoo [20]. We quantize each layer of VGG16 to 4b and mea-
sure the normalized mean-square error (NMSE) of each layer
and its effect on top-5 accuracy with all other layers encoded
in unquantized floating-point. The 4b results are shown in
Fig. 3 with each layers’ unquantized distributions in (a). In
(b), both quantization error and accuracy are higher for log2

4b than linear 4b except for the conv1 1 and fc8. We per-
form the same procedure on AlexNet, and we observe that
for all layers, log2 performs better than linear in accuracy and
quantization error in NMSE.

Quantizing these layers to 4b also sets many weights to
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Fig. 2. Heatmap of ∆NMSE = NMSElinear − NMSElog of
quantized networks for VGG16 and AlexNet. Log encoding
is superior below ≈ 6b.

0; for example, the total percentage of zero or sparse weights
can easily obtain ≥ 70% for sparse-optimized workloads. To
ensure a fair comparison between the two encoding strategies,
we compare the performance of log and linear with the same
level of sparsity of weights (%). Let ΩLSB represent the set
of indices for which the elements in quantized weights repre-
sented as W (l) equal ∆LSB. In ΩLSB, we randomly select n
elements and set them to 0, where n represents the difference
in the # of zero weights for linear and # of zero weights for
log. We then set W (l)(ΩLSB) → 0 and perform this opera-
tion over all l, which sets the number of sparse weights per
layer to be the same for log2 and linear. The accuracies are
shown in (d), where we still observe higher accuracies for all
but the two layers as before in (c) but now with the addition
of conv5 2.

We now quantize all layers to 4 and 5-bits as shown in
Table 1 without retraining and measure the classification ac-
curacies; we keep activations in floating-point. These results
confirm our expectations from the layer-wise quantization.
We see performance drops from floating-point that are not as
large for log2 4b as they are for linear 4b. In order to improve
accuracy degraded by 4b quantization, we retrain the layers
using Alg. 1, where we quantize the weights after every for-
ward pass using either LogQuant as shown or LinearQuant
for linear encoding.

Algorithm 1 Simple retraining using weights from original
quantized network. C is the softmax loss. f (W (k), gW (k) )
updates the k-th layer weights W (k) based on SGD’s error
gradients gW (k) .

Require: a minibatch of inputs and targets (a(0), alabel),
quantized weights W .

Ensure: updated quantized weights W (k) for k = 1, . . . , L.
for k = 1 to L do W (k) ← LogQuant(W (k)), a(k) ←
ReLU

(
W (k)a(k−1)

)
end for

Compute ga(L) = ∂C
∂a(L) knowing a(L) and alabel

for k = L to 1 do ga(k−1) ← ga(k)W (k), gW (k) ←
g>
a(k)a

(k−1), W (k) ← f(W (k), gW (k)) end for

The classification accuracy of VGG16 with weights en-
coded in log2 4b with or without is significantly higher than
that of linear at 4b with retraining as shown in Tables 1 and 2.

Fig. 3. Comparison of log2 4b and linear strategies to rep-
resent (a) layer-wise distributions on (b) quantization MSE,
(c) difference in top-5 accuracies, and (d) difference in accu-
racies when log2 4b with pruning is used. For (d), the # of
sparse weights is equal for both linear and log2 4b.

Table 1. Top-5 accuracies after linear and log2 encoding on
all layers’ weights without retraining.

Model Float 32b Lin. 4b log2 4b Lin. 5b log2 5b
AlexNet 78.3% 1.6% 73.4% 71.0% 74.6%
VGG16 89.8% 0.5% 85.2% 83.2% 86.0%

Retraining of weights is necessary to enable a good model in
linear 4b but unnecessary for log2 4b to meet 85.2% perfor-
mance. Furthermore, the frequency of zero weights is non-
intuitively higher for VGG16 log2 4b than linear 4b. We
control the sparsity patterns again by stochastically forcing
or pruning the weights less than a certain threshold to zero by
w ←− w�1(|w| > γ), where γ is the zeroing threshold. We
then retrain after pruning by freezing all weights except for
fc8 (the last layer) and subsequently quantizing fc8. We
achieve an accuracy of 80.5% as shown in Table 2 and de-
noted as log2 4b (pruned). Performing this yields an accuracy
that is higher than linear but with total weight sparsity that is
67% as compared with 21% for linear and 35% for the origi-
nal log (without pruning).

Logarithmic encoding on activations is also resilient at 3
and 4 bits. We apply the LogQuant and LinearQuant func-
tions on the activations of all layers in VGG16 and AlexNet.
For this setup, the weights are stored in floating-point. Our
observations are as follows. With log2 4b activations, the
accuracies are 76.9% (AlexNet) and 89.8% (VGG16) as
compared to linear 4b 77.1% (AlexNet), 89.4% (VGG16).
The difference in performance is small at 4b but grows at 3b
where log2 3b meets 89.2% while linear 3b falls to 83.0%
in VGG16. Finally, from Table 2, encoding activations at
log2 4b yields modest degradations with of ∼ 1% accuracy
penalty compared to ∼ 2% for linear 4b.
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Table 2. Linear versus logarithmic VGG16 after retraining
using Alg. 1. We publish these models in [22].

32b Lin. 4b log2 4b log2 4b pruned
top-5(32b acts) 89.8% 64.6% 85.2% 80.5%
top-5(4b acts) − 62.0% 84.8% 80.1%
sparse weights − 21.2% 35.8% 67.0%
sparse 4b acts. − 71.2% 58.2% 60.2%

Fig. 4. Hardware costs versus resolution in matrix multipli-
cation. The clock manager presents a ≈ 0.2W fixed cost for
both linear and log.

4. LOGNET HARDWARE

In digital hardware, weights logarithmically-encoded in logβ
interact with input activations by powers-of-β. For example,
the original linear wTa ≈

∑n
i=1 sign(wi) · ai · βw̃i , where

w̃i = Round(logβ(wi)), a represents the ReLU-ed activa-
tions of the previous layer, and sign(wi) = 1(wi > 0) −
1(wi < 0). Without loss of generality, we can cast the entire
wTa operation as a scaled sum of bitshifts of integers. We ex-
press this as wTa ≈ ∆−1

LSB ·(
∑n
i=1 Bitshift(ãi, w̃i, sign(wi)),

where ãi = ai ·∆LSB, and Bitshift(x, y, z) = sign(z) · x · 2y
means to take the unsigned integer x and shift its bits by
an integer amount y > 0 to the left and attach a sign bit
sign(z) = 1(z > 0) − 1(z < 0) to the resulting most-
significant-bit (MSB) in signed representation where the sum-
mation is performed using a signed accumulator. We will sim-
ply express ai, wi as integer representations ( i.e., ai, wi ∈ Z)
for notational convenience (e.g. Bitshift(ai, wi, sign(wi))).

We use bitshifts as multipliers and keep all activations and
additions in the linear domain for use in the LogNet convolu-
tional engine as shown in Fig. 1 (c). Two versions of the core
were synthesized: 1) with weights stored in distributed block
memories and 2) with weights that are statically-programmed
into the configurable logic blocks (CLBs). All versions in-
clude activations encoded in the linear domain where the ac-
tivations within the F × F -size sliding window are bitshifted
by an amount log2(|W (l)

?,?,i,j |) ∈ ZF×F , which are the lth-
layer weights for input channel j and output i stored locally
near each processing element (PE) as integers and distributed
across the entire fabric. Since these static weights are en-
coded with ultra-low precisions in log2 4b, they can localize
data movement and therefore reduce overall energy per op-
eration provided that FPGA congestion is well-tolerated by
constraining the filter size and activation resolutions.

A matrix-vector product Wa with W ∈ Z512×4096 is per-
formed where W is read from on-chip block SRAM (8b port)
at 100MHz. The dynamic power of the chip and hardware uti-
lization in # of lookup-tables (LUTs) are compared for vary-
ing resolutions encoding a and W in Fig. 4. The static power
is not shown as it is roughly independent of utilization. We
see that both power and utilization scale gracefully with res-
olution under log as compared to linear. Furthermore, we ob-
serve that scaling down to 1b illustrates the convergence of
linear and log while also dramatically improving hardware
costs for linear. Furthermore, using log2 4b increases hard-
ware costs by 1.04× than using 1b whereas using linear 4b
requires 2.4×.

In the pipelined architectures (Fig. 1), the convolutions
of 64 filters are performed in parallel for each F × F and
the window raster-scanned across all activation maps a ∈
Z
W×W×C(l)

simultaneously acrossW , whereW is the width
(and length) and C(l) the number of input channels. The
weights are statically-programmed into CLBs. The engine
is demonstrated on ILSVRC-2012 in Fig. 5. Three layers of
convolutions in log2 4b with pruned weights are performed on
the FPGA and are part of a larger network containing fully-
connected layers that are performed off-chip. The same net-
work is profiled using the Nvidia Titan X (Maxwell) with
CuDNN(R5) [23]. We measure the FPGA chip (VX485T)
power using the TI Power Designer [24] and the frame rates
by the number of frames per second in a real-time environ-
ment. We assume only 50% (similar to EIE’s 70% [17]) of
the GPU board powers computed from nvidia-smi are
used to power the chips. The efficiency advantage of the
pipelined LogNet (log2 4b) over GPUs is apparent when pool-
ing is not used because layers with time-decimated inputs are
still clocked at the full clock rate set by the first layer’s sam-
pling rate.

Fig. 5. Efficiencies of GPU and proposed pipelined LogNet.
ImageNet (1) contains {conv-ReLU-maxpool} × 3, and
(2) contains {conv-ReLU}×3 with input size 224×224, 64
filters per layer, batch size of 1, and pruned 4b log weights.

5. CONCLUSION

This paper presents the motivations for log computation to en-
able efficient inference for convolutional networks. We show
that log computation can enable more accurate encoding of
weights and activations than can linear at resolutions ≤ 4b.
We take advantage of log encoding of weights to enable con-
volutions and matrix-multiplications on the FPGA.
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