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ABSTRACT

This paper addresses the problem of finding optimal sensor place-
ment, i.e., determining F sensor positions from N possible loca-
tions. We propose a sensor selection method based on the localiza-
tion operator of graph signal processing. This method can select sen-
sors while considering the localizations both in graph vertex domain
and graph spectral domain and is fast, since eigendecomposition of
graph Laplacian matrix is not required. We also propose an interpre-
tation of the conventional node selection based on graph sampling
theory by using the graph localization operators. Experiments on
selected sensor location, execution time and prediction error com-
parisons are conducted to show the effectiveness of our approach.

Index Terms— Sensor placement, graph signal processing,
graph sampling theorem, localization operator, graph uncertainty
principle

1. INTRODUCTION

Sensor networks are commonly used in many applications to mon-
itor and control spatial phenomena. They include sensing of tem-
perature [1], air quality and/or rainfall, and monitoring of smart grid
systems [2]. In real applications, the number of sensors is often re-
stricted due to economic constraints, data storage and energy sav-
ing. Therefore, it is important to optimize sensor placement so that
a small number of sensors can collect the spatial data all over the
observed space. There are many approaches to address the sen-
sor placement problem, such as [2–5], where the goal is to choose
|S| = F locations for sensor placement out of |V| = N possible
locations, where S ⊆ V and V = {v0, . . . , vN−1} are the sets of
measured locations and possible locations, respectively.

In our previous work [6], we have proposed a sensor selection
method based on the sampling theory for graph signals [7–14]. This
was the first attempt to use graph signal processing for the sen-
sor placement problem. Approaches from graph signal processing
can be useful for sensor placement because graphs are well suited
to capture complete relationships between sensors, when sensors
are placed at irregular locations in the environment. In [6], we in-
terpreted conventional sensor selection methods, namely, entropy
[15,16] and mutual information (MI) [17,18] based criteria, from the
perspective of graph signal processing. The sensor selection in [6]
uses three kinds of graph sampling methods [11–13], and all of them
outperform conventional entropy and MI based criteria. However,
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they have high computational complexity since they need the eigen-
decomposition [12, 13] or calculating leading eigenvector(s) [11] of
graph Laplacian matrix.

In this paper, we propose a sensor selection method based on the
localization operator introduced in the context of uncertainty prin-
ciple of graph signals [19]. This method places sensors so that lo-
calized operators cover the overall area by optimizing the cost func-
tion with greedy heuristics. Therefore, we can select sensors deter-
ministically. It can provide flexibility for the change in the number
of sensors, that is, it can append or remove sensors one-by-one in-
stead of selecting all sensors every time when the number of sensors
changes. The benefits of using the localization operators are: a)
spectral localization makes it possible to mimic the frequency-based
node selection criteria of [6, 11–13], b) vertex localization is useful
to enable distributed sensor selection (to be applied independently
in different sections of the sensor network), and c) polynomial local-
ization operators lead to lower complexity, i.e., eigendecomposition-
free algorithms. We also show that the conventional graph sampling
approaches can be viewed as a node selection that chooses nodes
having the maximum value of a localization operator based on an
ideal kernel. In the experiment, we show the results of the sensor
placement and the execution time. We also present prediction error
comparisons to evaluate the performance of the proposed approach.
The proposed method is approximately 10 times faster than the ap-
proach in [13], 50 times faster than that in [11], and 1000 times faster
than that in [12], with comparable performance.

The rest of this paper is organized as follows. Preliminaries on
graph signal processing are summarized in Section 2. Section 3 de-
scribes the proposed selection algorithm based on the graph local-
ization operator. The section also explains the connection between
the graph sampling and the localization operator. Section 4 shows
the experimental results on selecting sensor locations and predicting
the signals on unobserved locations. Finally, Section 5 concludes the
paper.

2. PRELIMINARIES ON GRAPH SIGNAL PROCESSING

A graph is represented as G = (V, E), where V and E denote sets
of nodes and edges, respectively. The graph signal is defined as
f ∈ RN . We will only consider a connected, finite, undirected graph
with no multiple edges. The number of nodes is N = |V|, unless
otherwise specified. The (m,n)-th element of the adjacency matrix
A is the weight of the edge between m and n if m and n are con-
nected, and 0 otherwise. The degree matrix D is a diagonal matrix
and its mth diagonal element is D(m,m) =

∑
nA(m,n). The un-

normalized graph Laplacian matrix (GLM) is defined as L := D−A
and the symmetric normalized GLM is L := D−1/2LD−1/2. The
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symmetric normalized GLM has the property that its eigenvalues are
within the interval [0, 2]. The eigenvalues of L or L are λi and or-
dered as: 0 = λ0 < λ1 ≤ λ2 . . . ≤ λN−1 = λmax without loss
of generality. The eigenvector ui corresponds to λi and satisfies
Lui = λiui. The eigenvectors U = [u0 . . .uN−1] satisfy UU† =
IN where ·† is the conjugate transpose of a matrix or a vector and IN
is theN ×N identity matrix. The entire spectrum of G is defined by
σ(G) := {λ0, . . . , λN−1}. The graph Fourier transform is defined
as follows [20, 21]: f(λi) := 〈ui,f〉 =

∑N−1
n=0 u

∗
i (n)f(n), where

·∗ is the complex conjugate. The inverse graph Fourier transform is
f(i) =

∑N−1
n=0 ui(n)f(n). The projection matrix for the eigenspace

Vλi is Pλi =
∑
λ=λi

uλu
T
λ where uTλ is the transpose of uλ. Let

h(λi) be the spectral kernel of filter H. The spectral domain filter
can be written as H = h(L) =

∑
λi∈σ(G) h(λi)Pλi . The spectral

domain filtering of graph signals can be simply denoted as Hf . For
a vector x ∈ RN and a set A, the restriction of x to its compo-
nents indexed by A is denoted by xA. For a matrix X ∈ RN×N ,
XAB denotes the restriction matrix of X, which is obtained from
extracting rows indexed by A and columns indexed by B from X,
and XA := XAA.

2.1. Localization Operator

The localization operator on center vertex i is defined as [19]

Tig(n) =
√
N
∑N−1
l=0 ĝ(λl)u

∗
l (i)ul(n), (1)

where ĝ(λ) is an arbitrary filter kernel. Its `2-norm is represented as

‖Tig‖2 =

√∑N−1
n=0

(√
N
∑N−1
l=0 ĝ(λl)u∗l (i)ul(n)

)2
. (2)

3. SENSOR SELECTION BASED ON
GRAPH LOCALIZATION OPERATOR

This section introduces the novel sensor placement method which
selects sensors based on the graph localization operator. Further-
more, we describe the existing graph sampling approach by using
the graph localization operator.

3.1. Proposed Method

The sensor selection algorithm introduced in this subsection has the
following properties: a) simultaneous localization both in graph ver-
tex domain and graph spectral domain, b) deterministic selection, c)
selection without full eigendecomposition of graph Laplacian ma-
trix.

Firstly, we construct a graph from the possible sensor positions
and we treat the observed signal as a graph signal. The connection of
nodes (edges) can be freely chosen by the application, for example,
we can use a data-driven graph (sparse inverse covariance), a dis-
tance based graph (negative exponential of distance) or the approxi-
mate graph. In this paper, for the sake of comparison with the con-
ventional machine learning-based approaches, we assume that the
graph signal f is stochastic and has the following Gaussian joint
zero-mean distribution [22]:

p(f) = 1

(2π)
N
2 |K|

exp
(
− 1

2
fTK−1f

)
, (3)

where ·T is the transpose of a matrix or a vector, K ∈ R|V|×|V| is
the covariance matrix of all locations V in which its (i, j)th element
is K(i, j) with a symmetric positive-definite kernel function K(·, ·),

and |K| is the determinant of K. The graph Laplacian matrix can be
obtained from the inverse covariance matrix (precision matrix) [10]:

L = K−1 − δI. (4)

The parameter δ prevents the precision matrix from being singular.
L in (4) is a “generalized” graph Laplacian matrix, i.e., it could have
negative edges and self loops. The graph used in this paper is ob-
tained by pruning the self loops and negative edges from the graph
constructed from (4). We can also use a graph Laplacian estimated
directly from prior information, e.g., by using physical networks of
power systems, when the signals do not have the distribution (3).

For sensor selection, each coordinate of the vector Tig can be
regarded as the quantitative measure of the coordinate belonging to
the ith sensing area. Note that it is the vertex domain operator with
consideration of the spectral domain information. We select the set
of sensor locations S so that Tig (i ∈ S) covers overall area evenly,
i.e., the sum of ‖Tig‖22 (i ∈ S) is large and the overlapping covered
by both Tig and Tjg (i 6= j) is small. Such set will be obtained by
optimizing the following function:

maxS

∥∥∥∑i∈S Tig ◦ Tig −
∑
i∈S,j∈S,i 6=j Tjg ◦ Tig

∥∥∥2
2

=
∥∥∥∑i∈S,j∈S,i6=j (Tig − Tjg) ◦ Tig

∥∥∥2
2
,

(5)

where ◦ represents the Hadamard product. To optimize the cost func-
tion, we use a greedy algorithm, which appends one sensor in the
mth iteration by selecting sensor y∗ satisfying the following func-
tion:

y∗ = arg max
y∈Sc

m

∥∥∥τ (C1N×1 −
∑
j∈Sm |Tjg|

)
◦ Tyg

∥∥∥2
2
, (6)

where Sm is the already selected sensors in the mth iteration, Scm =
V \Sm, τ (·) is a function that satisfies [τ(x)](i) = x(i) if x(i) ≥ 0
and 0 otherwise, and C ∈ R is an arbitrary real value.

In (6), we calculate the weighted norm of Tyg. A small weight
is assigned to Tyg(i) if the ith node has already been covered: In
this case, the weight of

∑
j∈Sm Tjg at the ith node is large. In each

iteration, we avoid selecting sensors whose localized operators are
overlapped with those of already selected sensors since the weight
for Tyg(i) becomes 0 when

∑
j∈Sm Tjg(i) ≥ C. In this paper,

we use C = 1
|V|
∑
i∈V

∑
j∈Sm |Tjg(i)|, which is experimentally

determined.
If the kernel ĝ(λ) is a polynomial function, we can cal-

culate (6) without eigendecomposition of graph Laplacian ma-
trix. Let T = [T0g T1g . . . TN−1g]. This can be written as
T =

√
NUĝ(Λ)U†. When ĝ(λ) is a polynomial function, it is

rewritten as T =
√
Nĝ(L). Therefore, localization operators can

be obtained without the eigenvectors themselves. As a result, if the
original kernel ĝ(λ) is a polynomial or the Chebyshev polynomial
approximation is applied to ĝ(λ), the eigendecomposition is not
required for the proposed node selection.

3.2. Relationship With Graph Sampling Method

The method in [11] selects nodes in a graph1 to maximize a cut-off
graph frequency ω where the cut-off frequency associated with the
subset S is a bound on the maximum frequency of a graph signal

1The method in [7] is a general method to select appropriate nodes in a
graph. It is not specifically designed to select sensors.
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Table 1. Computational Complexities of Graph Signal Processing Based Approaches
EV [11] SVD [12] SB [13] Proposed Method w/ CPA

Eigen-pair or operator computations O(k|E|FT2) O((|E|F + CF 3)T1) O((|E|F + CF 3)T1) O((|E|+N)p)
Sampling set search O(NF ) O(NF 4) O(NF 3) O(N2F )

that can be perfectly recovered from the samples on the subset S. It
adds the mth additional node

y∗ = arg max
y

[(ũm0 (y))2], (7)

where ũm0 is the eigenvector of (Lk)Sc
m

associated with the min-
imum eigenvalue λ̃0, and k ∈ Z+ is a parameter. The following
proposition clarifies the relationship between the method and the lo-
calization operator.

Proposition 1. The sampling node selection proposed in [11] is
identical to the case of selecting the node y in the mth iteration
which maximizes ‖Tig‖2 if eigenvectors (transform basis) ul are
selected as the ones of subsampled normalized graph Laplacian ma-
trix (Lk)Sc

m
with the following kernel ĝ(λ):

ĝ(λ) =

{
1 if λ = 0

0 otherwise.
(8)

Proof. If the kernel ĝ(λ) in (8) is used, ‖Tig‖2 with eigenvectors
(transform basis) vl becomes

‖Tig‖2=

√∑N−1
n=0

(√
Nv∗0(i)v0(n)

)2
= |v∗0(i)|

√
N
∑N−1
n=0 v0(n)2.

(9)

Since
√
N
∑N−1
n=0 v0(n)2 is a constant that does not depend on i,

maxy ‖Tyg‖2 = maxy |v∗0(y)| = maxy(v0(y))2. (10)

Hence, when vl is the eigenvector of (Lk)Sc
m

, i.e., vl = ũml , the
selection of node which maximizes ‖Tig‖2 shows the same results
as the method in [11].

Therefore, node selection in graph sampling theory [11] can
also be interpreted as node selection based on a localization oper-
ator defined by an ideal kernel. Although the sampling approach in
[11] could also be performed without eigendecomposition by treat-
ing ĝ(λ) in (8) a localization operator, approximating the filter in (8)
would require a high degree polynomial and would not be practical.

4. EXPERIMENTAL RESULTS

The proposed sensor selection is compared with the graph sampling
theory based criteria [6, 11–13], the entropy based criterion [15, 16]
and the MI based criterion [17] through numerical experiments. For
the graph sampling theory-based criteria, we denote the selection
method in [11], [12] and [13] as EV (referred to as eigenvector),
SVD (singular value decomposition) and SB (standard basis), re-
spectively. We assume that all the original signals used in these ex-
periments have a Gaussian distribution as in (3). Although the ker-
nel in (3) can be arbitrarily chosen, all experiments use the follow-
ing stationary kernel2: K(i, j) = exp

(
−‖xi − xj‖2/θ2

)
, where

2This is one of covariance functions for the GP model used in [17].

xi ∈ R2 is the coordinate of the ith node vi and θ is a parame-
ter. θ = 1 is used for all experiments. We used that oracle on the
statistics of graph signals without training from the data. Moreover,
the data was also generated according to a GMRF with this kernel,
i.e., the graph used for sensor selection is based on the same model
used to generate the data. Therefore, the approximate graph in the
experiment is expected to show good performance as well as a data-
driven graph. In a real situation, the kernel K(·) can be estimated
from prior information or observed data [23].3 All experiments were
performed in Matlab R2015b, running on a PC with Intel Xeon E5
3 GHz CPU and 64 GB RAM. Matlab toolbox for submodular func-
tion optimization [24,25] is used for implementations of the entropy
and MI criteria.

4.1. Execution Time and Complexity

Firstly, we compare the execution time for choosing various number
of locations from randomly generated locations. |S| = |V|/10 sen-
sors are selected with various number of possible locations V . We
use k = 8 for EV. The proposed method uses the kernel ĝ(λ) =
exp(−10λ/λmax). Figure 1 shows the execution time comparison
plotted against |V|. The proposed methods are very fast regardless of
the number of possible locations even when we did not use Cheby-
shev polynomial approximation. Since the proposed method with
Chebyshev polynomial approximation does not need eigendecom-
position of the graph Laplacian matrix, it is very fast compared to
the methods based on the graph sampling theory.

Table 1 compares the computational complexity among graph
signal processing based methods [7,11–13], where T1 is the average
number of iterations required for convergence of a single eigen-pair,
T2 is the number of iteration of convergence for first F eigen-pairs,
k provides a trade-off between performance and complexity, C is a
constant and p is the approximation order of Chebyshev polynomial
approximation. We follow the notation in [11]. The calculation of
the localization operator in the proposed method includes complex-
ity for performing Chebyshev polynomial approximation and filter-
ing [21]. It can be seen that the calculation of the localization opera-
tor shows much lower complexity than the complexities for calculat-
ing the eigen-pairs in the other approaches. Although the proposed
method has higher complexity than EV in the sampling set search
in Table 1, its total execution time is usually lower than EV and the
other conventional approaches, which is experimentally validated in
Fig. 1. The proposed method without Chebyshev polynomial ap-
proximation needs eigendecomposition for computing the operators.
Its computational complexity is usually O(N3). However, it is still
faster than the conventional approaches. This might be because the
search algorithm of the proposed method is faster than those of the
other approaches.

3Actually the estimation accuracy affects the selected sensor positions and
the reconstruction qualities of graph signals. We are studying the effect of the
estimation accuracy and have a room to further improve the performance of
our method.
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Table 2. Performance Comparison (Average of 400 Tested Signals): SNR [dB]

|S| Entropy [15, 16] MI [17] Graph sampling theory [6] Prop. w/ exponential kernelEV [11] SVD [12] SB [13]
20 1.73 4.96 5.31 5.35 5.13 4.99
40 3.09 6.59 6.81 6.88 6.72 6.71
60 3.62 7.69 7.96 8.07 7.84 7.83
80 4.13 8.67 8.92 8.99 8.77 8.81

100 4.78 9.52 9.68 9.71 9.52 9.49

Table 3. Difference Between Exact and Approximated Method (Average of 50 Tested Graphs): Number of Sensors That are Selected by
Exact Method and Not Selected by Approximated Method

Approximation order 1 2 3 4 5 6 7 8 9 10
# of the different sensors 26.53 22.30 14.80 7.97 3.87 1.47 0.60 0.20 0.03 0.00

4.2. Prediction Error Comparison

We predict graph signal values on the unobserved locations and com-
pare the reconstruction errors. Tested signals are randomly gener-
ated according to the GP model and are corrupted by additive white
Gaussian noise with σ = 0.1. An example of the possible loca-
tions, the created graph and the input signal are shown in Figs. 2 (a)
and (b). We use k = 6 for EV. We select the set of nodes S from
500 randomly generated locations, set the signals on Sc to zero and
reconstruct the original signals only from the signals on S. The es-
timated signal is represented as f = UVRU−1

SRfS where R is the
set of Laplacian eigenvalues less than λF−1 (for SVD and SB) or
the estimated cut-off frequency Ωk(S) with k = 6 (for the other
methods).

The average SNRs after 400 independent runs between the pre-
dicted signal and the original signal are shown in Table 2. Sig-
nals reconstructed from 50 samples are shown in Fig. 2. It can
be seen that the proposed method shows better performance than
the entropy based criteria and indicates the comparable performance
to the other approaches. Note that the proposed method with the
10th order Chebyshev polynomial approximation shows the same
SNRs that without approximation in almost all cases. The recon-
struction method used in this experiment is specifically designed for
graph sampling theory-based approaches. The optimal reconstruc-
tion method for localized operators would improve the performance
of the proposed method.

4.3. Effect of Chebyshev Polynomial Approximation

The performance of the proposed method with Chebyshev poly-
nomial approximation is illustrated by Table 3, which shows
the number of sensors which is selected by the exact method
(with full eigendecomposition) but not selected by the proposed
method with Chebyshev polynomial approximation. We select
100 sensor locations from 500 possible locations. The kernel is
ĝ(λ) = exp(−10λ/λmax). They select almost the same sensors
when approximation order is larger than 8. It clearly depends on
the smoothness of the kernel since sinusoidal waves are used for
approximation.

5. CONCLUSION

We proposed a sensor placement method based on the localization
operator for graph signals and described the connection between the
sampling theory and graph localization operators. The proposed ap-
proach is very fast compared to the approaches with graph sampling,
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Fig. 1. Execution time comparison. Note that the vertical axis is
a logarithmic scale. CPA is referred to as Chebyshev polynomial
approximation. The approximation order is p = 8.
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Fig. 2. Reconstructed signals from 50 selected locations. (a) Possi-
ble locations (black circle) and connections of these locations (black
lines). (b) Input signal. (c) Entropy (SNR = −1.08 dB). (d) MI
(7.30 dB). (e) EV (7.29 dB). (f) SVD (7.28 dB). (g) SB (7.05 dB).
(h) Proposed method with exponential kernel (7.35 dB).

since it does not need the eigendecomposition of graph Laplacian
matrix. Furthermore, its prediction performance is comparable to the
existing approaches. Although the experiments assume that signals
have Gaussian distributions for a comparison purpose, our methods
could also be effective for non-Gaussian cases. It would be expected
that selecting ĝ(λ) according to the properties of sensors or the re-
construction (interpolation) process from observed values leads to
high performance gain.
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