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ABSTRACT

This paper examines the existence of efficiently implementable
approximations of a general real linear dimensionality reduction
(LDR) operator. The specific focus is on approximating a given
LDR operator with a partial circulant structured matrix (a matrix
whose rows are related by circular shifts) as these constructions
allow for low-memory footprint and computationally efficient im-
plementations. Our main contributions are theoretical: we quantify
how well general matrices may be approximated (in a Frobenius
sense) by partial circulant structured matrices, and also consider a
variation of this problem where the aim is only to accurately ap-
proximate the action of a given LDR operator on a restricted set of
inputs. For the latter setting, we also propose a sparsity-regularized
alternating minimization based algorithm for learning partial circu-
lant approximations from data, and provide experimental evidence
demonstrating the potential efficacy of this approach on real-world
data.

Index Terms— Circulant matrices, subspace learning, matrix
factorization, sparse regularization, big data

1. INTRODUCTION

Linear dimensionality reduction (LDR) is at the core of many appli-
cations in signal processing, statistics, and machine learning. LDR
methods yield low-dimensional linear mappings which aid in visu-
alizing, efficient processing and extracting features from noisy high-
dimensional data. Principal component analysis, perhaps one of the
most classical and widely used techniques for high-dimensional data
analysis, is essentially an LDR technique designed to preserve the
variance of the original data in the lower-dimensional space. It has
been widely used for data compression, de-noising, and as a dimen-
sionality reducing pre-processing step for other analyses (e.g., clus-
tering, classification, etc.) [1]. Similarly, the design of LDR op-
erators for other specific purposes has resulted in techniques such
as linear discriminant analysis, canonical correlations analysis, and
many more. See the survey paper [2] for many additional examples.

Recently random LDR operators have emerged as a useful
tool for universal “pre-compression” in high-dimensional infer-
ence tasks. For example, fully random LDR operators are at the
core of the initial investigations into compressed sensing (CS) (see,
e.g., [3]); other, more structured, LDR operators – both non-adaptive
(see, e.g., [4–10] ) and adaptive (see, e.g., [11–20]) – have also been
examined recently in the context of CS and sparse inference.

This work was supported in part by DARPA/ONR Grant No. N66001-
11-1-4090 and the DARPA Young Faculty Award, Grant No. N66001-14-1-
4047.

With the ever increasing dimensionality and volume of data, the
implementation of LDR operators is itself becoming resource inten-
sive. A (here, real) LDR operator can be represented as a matrix
A ∈ Rm×n (with m < n) and it generally requires O(mn) oper-
ations for applying it on an arbitrary vector x ∈ Rn. The number
of operations can be superlinear in n even for modest values of m
(e.g., when m = nβ for β ∈ (0, 1] the complexity is O(n1+β)).
Given these considerations, structured LDR operators are particu-
larly attractive as they offer efficient implementations. The specific
focus of this paper is on employing partial circulant approximations
to general LDR operators. There are two main motivations for con-
sidering such approximations: (1) from a system perspective, partial
circulant matrices arise naturally when describing (sampled outputs
of) certain linear time invariant (LTI) systems, and (2) from a com-
putational perspective, partial circulant matrices admit fast memory
efficient implementations via the fast Fourier transform (FFT) and
sub-sampling operations. In this paper, we try to answer the funda-
mental question – How well can a partial circulant structured ma-
trix approximate a given LDR matrix? We investigate the quality
of approximation for several partial circulant approximations, and
provide some initial experimental results to demonstrate potential
efficacy of these methods for large-scale data processing tasks.

1.1. Connections to Existing Work

Circulant approximations to square matrices are classical in linear
algebra; for example, circulant preconditioners for linear systems
were examined in [21–23]. In works motivated by “optical informa-
tion processing,” several efforts have examined fundamental aspects
of approximating square matrices by products of circulant and di-
agonal matrices [24–28]. Here, our focus is on LDR matrices (not
square matrices), so results from these works are not directly appli-
cable here.

Random partial circulant matrices have also been studied re-
cently in compressed sensing tasks [29–33], and random partial cir-
culant matrices with diagonal pre-processors have been proposed as
computationally efficient methods for Johnson-Lindenstrauss (JL)
embeddings in [34–37]. The work [38] established the viability
of using random partial circulant matrices for embedding manifold-
structured data. In contrast to these works, here our aim is to approx-
imate the action of a given LDR matrix, not necessarily to perform
JL embeddings.

1.2. Our Contributions

Our first main result pertains to approximating A by a partial circu-
lant matrix Ã = SC, obtained by choosing m distinct rows from
an n × n circulant matrix C via a row-subsampling matrix S that
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is a permuted subset of m rows of In (the n × n identity matrix).
Such matrices enjoy a low computational complexity of O(n logn)
as well as a concise O(m+ n) storage cost. Despite these potential
benefits, our first result here is negative – we establish that “most”
LDR matrices are not well-approximated (in a Frobenius sense) by
partial circulant matrices.

We then propose a generalization that uses approximations of
the form Ã = PSC, where C and S are as above, except that S
has some m′ ≥ m rows, and P is an m × m′ “post-processing”
matrix. Operating with this type of matrix approximation requires
O(mm′ + n logn) operations in general and an O(mm′ + m′ +
n) storage cost, both of which can be as low as O(n logn), e.g.,
when m′ = O(n1/2). We present a new result that connects the
approximation error to the so-called Gaussian width of the set of
“post-processed” partial circulant matrices of the form above.

Next, we examine a modified paradigm wherein we exploit the
fact that signals of interest often reside on a restricted input domain
(e.g., a union of subspaces, manifold, etc.). In such settings, we may
restrict our approximation to mimicking the action of A on these
inputs. We provide a concise argument establishing the efficacy of
this more general approach for certain restricted inputs, describe a
data-driven approach to learning the factors of the approximating
matrix, and provide empirical evidence to demonstrate the viability
of this approach.

All results are stated here without proof; detailed proofs appear
in a working manuscript in preparation [39].

1.3. Outline

After introducing few preliminaries, in Section 2 we present a fun-
damental approximation result regarding partial circulant approxi-
mations to general LDR matrices. In Section 3 we analyze the par-
tial circulant approximations with “post-processing”. In Section 4
we present a generalized “data-driven” approach. Numerical exper-
iments on a real-world dataset are discussed in Section 5. The con-
clusion and future directions of research are provided in Section 6.

1.4. Preliminaries

We introduce some preliminary concepts and notation that will be
used throughout the paper. First, we define

R =

[
0(n−1)×1 In−1

1 01×(n−1)

]
,

to be the “right rotation” matrix, in that post-multiplication of a row
vector by R implements a circular shift to the right by one position.
Analogously, post-multiplying a row vector by L = RT implements
a circular shift to the left by one position; note that LR = In. We
represent an n× n (real) circulant matrix by

C =


c1 c2 · · · cn
cn c1 · · · cn−1

. . .
c2 c3 · · · c1

 =


cT

cTR
...

cTRn−1

 , (1)

where c = [c1 · · · cn]T ∈ Rn. We let Cn denote the set of all (real)
n-dimensional circulant matrices. The set Sm denotes the set of
m×n row sub-sampling matrices whose rows comprisem different
rows of In. For m < n, the set of all m × n real partial circulant
matrices is

PCm,n =
{
SC ∈ Rm×n | S ∈ Sm,C ∈ Cn

}
. (2)

The set of partial circulant matrices with m′-rows and a post-
processing matrix defined as follows

PCm,m′,n =

{
PSC

∣∣∣∣ P ∈ Rm×m
′
,S ∈ Sm′ ,C ∈ Cn

}
. (3)

For A ∈ Rm×n, we denote its m individual rows by Ai,: for i =
1, . . . ,m and its n columns by A:,j ∈ Rm for j = 1, . . . , n.
The squared Frobenius norm of A is ‖A‖2F =

∑
i,j |Ai,j |

2, and
‖A‖2,1 =

∑n
j=1 ‖A:,j‖2, where ‖A:,j‖2 is the Euclidean norm of

A:,j .

2. APPROXIMATION WITH PARTIAL CIRCULANT
MATRICES

We first consider approximating the given LDR matrix A ∈ Rm×n
with a partial circulant Z ∈ PCm,n by minimizing the Frobenius
norm distance of A from PCm,n. In this setting, the minimum ap-
proximation error is

EPCm,n(A) = min
Z∈PCm,n

‖A− Z‖2F . (4)

Evaluating (4) is a non-convex optimization problem. In the follow-
ing lemma, we provide a precise characterization of the minimum
achievable approximation error for a given A.

Lemma 2.1. For A ∈ Rm×n, we have

EPCm,n(A) = ‖A‖2F −R2(A), (5)

where R(A) is defined as

R(A) = max
f∈F

‖
∑m
i=1 Ai,:L

fi‖2√
m

, (6)

and F is the set of m-dimensional vectors with distinct components
taking integer values in [0, n− 1] defined as

F =
{

[f1, · · · , fm] ∈ {0, ..., n− 1}m
∣∣∣fi 6= fj ∀i 6= j

}
.

We call the term R(A) in (6) the Rubik’s Score of the matrix A,
inspired by the fact that R(A) is maximized when the circular shifts
of the rows {Ai,:} are “maximally aligned”. A large value of the Ru-
bik’s Score implies better approximation. In can easily be shown that
0 ≤ R(A) ≤ ‖A‖F , with R(A) = ‖A‖F for all A ∈ PCm,n.
Calculation ofR(A) is difficult as it involves maximization over the
discrete set F . We can gain additional insight using a probabilis-
tic technique – instead of quantifying the approximation error for a
fixed A, we consider drawing matrices A randomly, so that their
unit-normed row-wise vectorized representations are uniformly dis-
tributed on the unit sphere in Rmn. (These matrices can be gener-
ated as matrices with iid zero-mean Gaussian elements.) We then
quantify the proportion of matrices whose (optimal) partial circu-
lant approximation error is at most a fixed fraction of their squared
Frobenius norm. With this, we establish the following theorem

Theorem 2.1. For 2 ≤ m ≤ n, let A ∈ Rm×n have iid N (0, 1)
entries. Then for δ ∈ [0, 0.125), and n is sufficiently large, there
exists a positive constant c(δ) such that

Pr(EPCm,n(A) ≤ δ‖A‖2F ) = O(e−c(δ)·mn).

Theorem 2.1 implies that the proportion of large matrices that
can be approximated to high accuracy by partial circulant matrices
decays exponentially with the product of matrix dimensions mn.
Stated another way, most large matrices are not well-approximated
by partial circulant matrices.
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3. APPROXIMATION USING PARTIAL CIRCULANT
MATRICES WITH POST-PROCESSING

We now consider a more general framework in which we approxi-
mate A by a partial circulant matrix with post-processing in the set
PCm,m′,n. In this setting, the minimum approximation error is

EPCm,m′,n(A) = min
Z∈PCm,m′,n

‖A− Z‖2F . (7)

Again evaluating EPCm,m′,n(A) is a non-convex problem. How-
ever, quantifying the improvements offered by this expanded approx-
imation model is possible when we make use of the following result.

Lemma 3.1. For A ∈ Rm×n, we have

EPCm,m′,n(A) = ‖A‖2F −

[
max

Z∈P̃Cm,m′,n

Tr
(
ATZ

)]2
,

where P̃Cm,m′,n =

{
Z
‖Z‖F

∣∣∣∣Z 6= 0,Z ∈ PCm,m′,n
}

.

The quantity maxZ̃∈P̃Cm,m′,n
Tr
(
AT Z̃

)
in Lemma 3.1 is

analogous to the Rubik’s score in the previous section. For a
given A, it determines quality of approximation with the partial
circulant matrix with post-processing. Also, since PCm,n ⊂
P̃Cm,m′,n it is easy to see that the Rubik’s score satisfies R(A) ≤
maxZ̃∈P̃Cm,m′,n

Tr
(
AT Z̃

)
. This implies that the approxima-

tions with partial circulant matrices that employ post-processing are
guaranteed to be no worse than those without post-processing.

We codify the approximation error for general matrices via the
following result.

Theorem 3.1. Assuming that A ∈ Rm×n have iid N (0, 1) entries,
we have

EA

(
EPCm,m′,n(A)

)
≤ mn−

[
ω(P̃Cm,m′,n)

]2
, (8)

where ω(P̃Cm,m′,n) is the Gaussian width of P̃Cm,m′,n, defined
as

ω(P̃Cm,m′,n) = EA

(
max

Z∈P̃Cm,m′,n

tr
(
ATZ

))
.

Theorem 3.1 provides a fundamental insight that the aver-
age approximation quality of partial circulant matrices with post-
processing matrix is related to a notion of the size of the set
P̃Cm,m′,n, quantified via the Gaussian width. Therefore, un-
derstanding the dependence between the Gaussian width and m′ is
crucial. The following lemma sheds some light on this dependence.

Lemma 3.2. The Gaussian width of P̃Cm,m′,n is bounded as

ω(P̃Cm,m′,n) ≥ mm′√
1 +mm′

.

Using the lower bound on the Gaussian width in Lemma 3.2
along with the result in Theorem 3.1 we arrive at the following upper
bound on the expected error

E
(
EPCm,m′,n(A)

)
≤ mn

(
1− m′

n

mm′

1 +mm′

)
(9)

The above inequality gives insight in how the expected approxima-
tion error decreases with increasing m′: since for modest values of
m,m′ the term mm′

1+mm′ ≈ 1, we see that the (average) approxima-
tion error decreases roughly linearly in m′.

4. THE DATA DRIVEN APPROACH

The underlying theme of the approximation techniques considered
so far is that they approximate the given LDR matrix globally. How-
ever, in many practical applications where LDR methods are em-
ployed (e.g. PCA, LDA, Compressive Sensing etc.) the data to be
processed is not arbitrary, but lie in some restricted input domain
(e.g., in a low-dimensional subspace, a union of low-dimensional
subspaces, distinct clusters, etc.). In these settings, the approxima-
tion can be much better, provided that the inner dimensionm′ exceed
a measure of complexity of the restricted input domain. This is made
concrete here by the following existence result.

Theorem 4.1. Let A ∈ Rm×n be any fixed matrix, and letX be any
finite set of n-dimensional unit-norm vectors. For any ε ∈ (0, 1),
there exists a post-processing P ∈ Rm×m

′
, sampling matrix S ∈

Rm
′×n comprised of rows of identity matrix In, and circulant matrix

C ∈ Cn×n for which

sup
x∈X
‖Ax−PSCx‖2 ≤ ε‖A‖F ,

provided that m′ > c1ε
−2 log (c2m|X |) log4(n) where c1 and c2

are universal positive constants.

We note that above result is for finite sized sets but extensions to
general sets are also possible. This line of investigation leads natu-
rally to a data-driven approach in which we are given a data matrix
X ∈ Rn×p whose columns are “representative” of the restricted
domain for the problem of interest and we want to control the worst-
case approximation error of the action of A on X. Here we inves-
tigate a related (more tractable) variant of this approach, where we
assume we are given a “representative” data matrix X ∈ Rn×p and
aim to minimize the aggregate error ‖AX − PSCX‖2F . This ap-
proach ensures the approximation be accurate in an average sense.

Naively, this minimization would need to be solved for various
values of m′. Here we propose an alternative approach: since for a
fixed value of m′ the resulting matrix PS obtained by this approach
has exactly m′ non-zero columns, we propose to effectively com-
bine the actions of the sampling and post processing matrices. We
let M , PS, and seek column sparsity in M using the ‖M‖2,1
regularization term; this results in an optimization of the form

min
M∈Rm×n,C∈Cn

‖AX−MCX‖2F + λ‖M‖2,1 + µ‖C‖2F ,

where λ > 0, µ > 0 are the regularization parameters. In this for-
mulation the non-zero columns m′ vary with λ. The regularization
term ‖C‖2F is needed to fix scaling ambiguity introduced due to the
matrix product term MC.

This problem is jointly non-convex in M and C due to the ma-
trix multiplication term MC, so we propose an alternating mini-
mization based approach shown in Algorithm 1. Note that both C
as well as M update steps are convex problems, and can be solved
using existing software (e.g., SLEP [40]). For large scale datasets
computationally faster alternatives leveraging the circulant structure
are also possible. Due to space limits we do not discuss these here.

5. EXPERIMENTAL EVALUATION

We evaluate these approaches using the processed COIL-20 image
database [41]. This database contains 128 × 128 images which
were vectorized to obtain a data matrix X whose columns represent
1440 vectorized images from the dataset. We took rows of A as the
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Fig. 1: Results for data-driven approximation of LDR matrix obtained by top 300 principal components of training data obtained by resized
images from COIL-20 database. The first panel (left to right) contains log average relative approximation error vs. m′. The second panel
shows the ratio of average time taken by the matrix approximation and A vs. the log average relative approximation error. The third panel
shows the histogram of errors with m′ = 6246.

Algorithm 1 The “Data-Driven” approach algorithm.

Inputs: LDR matrix A ∈ Rm×n, parameters λ, µ, ε > 0,
Matrix of “representative” data X ∈ Rn×p,

Initialize: M(0) = UΣ (from the SVD AX = UΣVT )
obj(0) = ‖AX‖2F

repeat
C(t) = arg minC∈Cn ‖AX−M(t−1)CX‖2F + µ‖C‖2F
M(t) = arg minM∈Rm×n ‖AX−MC(t)X‖2F + λ‖M‖2,1
obj(t) = ‖AX−M(t)C(t)X‖2F + µ‖C(t)‖2F + λ‖M(t)‖2,1

until obj(t) − obj(t−1) ≤ ε · obj(t−1)

Output: M∗ = M(t),C∗ = C(t)

top 300 principal component vectors of the training data. In Algo-
rithm 1, we use µ = 0.1 and vary λ to obtain M∗ and C∗ for each
value of λ, and quantified the normalized error on the training set
vs. column sparsity of M∗. We also plot the results for the circulant
approximation to the matrix A without the post-processing.

The first panel (left to right) in Figure 1 plotsm′ vs. log average
relative error for “data-driven” approximations with and without the
post-processing matrix. We can see from the plot that approximat-
ing with the post-processing matrix (shown in blue dotted line with
triangular marker) incurs far less error as compared to approxima-
tion without the post-processing matrix (shown in black star marker).
This plot demonstrates the superiority of approximations with post-
processing relative to those without post-processing.

The second panel (left to right) in Figure 1 gives insight into the
relative time taken by matrix approximations shown as blue mark-
ers in the plot in first panel as compared to the original LDR matrix
A; it shows the ratio of average time taken by A and by its “data-
driven” approximation with post-processing matrix obtained from
Algorithm 1 versus the log average relative error. A C programming
language based implementation was used for matrix-vector multi-
plication by A as well as for its circulant structured approximation.
The average time was obtained by averaging over 10 trials. We can
see that the multiplication with approximations obtained by Algo-
rithm 1 is faster than the given LDR matrix A. The speed is due
to the FFT based implementation of matrix vector multiplication.
We can see that as m′ increases the speed of matrix vector multi-
plication decreases but the log average relative error also decreases.
For a representative λ corresponding to the sparsity of m′ = 6246,
we computed a histogram of the normalized approximation errors

‖Ax−MCx‖22/‖Ax‖22 for each point in the training dataset. The
histogram is plotted in third panel of the Figure 1. Most of the rela-
tive errors are relatively small, demonstrating that our approach pro-
vides fairly accurate approximation.

6. CONCLUSION AND FUTURE WORK

We investigated the problem of approximating an arbitrary LDR ma-
trix via various partial circulant structured matrices, presented sev-
eral fundamental results, and evaluated numerically a “data-driven”
partial circulant approximation approach. Future directions of re-
search include extension of the basic analytical framework devel-
oped here to other structured matrix approximations with low im-
plementation complexities (e.g., sparse matrices and fast JL embed-
dings [42, 43]).
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