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ABSTRACT
We address the problem of inferring a graph from nodal observa-
tions, which are modeled as non-stationary graph signals generated
by local diffusion dynamics that depend on the structure of the
sought network. Using the so-called graph-shift operator (GSO) as a
matrix representation of the graph, we first identify the eigenvectors
of the shift matrix from realizations of the diffused signals, and then
we rely on these spectral templates to estimate the eigenvalues by
imposing desirable properties on the graph to be recovered. Differ-
ent from the stationary setting where the GSO and the covariance
matrix of the observed signals are simultaneously diagonalizable,
here they are not. Hence, estimating the eigenvectors requires first
estimating the unknown diffusion (graph) filter – a polynomial in the
GSO which does preserve the sought eigenbasis. To carry out this
initial system identification step, we leverage different sources of
information on the input signal driving the diffusion process on the
graph. Numerical tests showcase the effectiveness of the proposed
algorithms in recovering social and structural brain graphs.

Index Terms— Network topology inference, graph signal pro-
cessing, (non-)stationary graph processes, system identification.

1. INTRODUCTION
Consider a network represented as a weighted and undirected graph
G, consisting of a node set N of known cardinality N , an edge set
E of unordered pairs of elements in N , and edge weights Aij ∈ R
such that Aij = Aji 6= 0 for all (i, j) ∈ E . The edge weights Aij

are collected in the symmetric adjacency matrix A. More broadly,
one can define a generic graph-shift operator (GSO) S ∈ RN×N

as any matrix having the same sparsity pattern than that of G [1].
Although the choice of S can be adapted to the problem at hand,
most existing works set it to either A, the combinatorial Laplacian
Lc := diag(A1)−A, or its normalized counterparts [2].

Our focus in this paper is on identifying graphs that explain the
structure of a random signal. Formally, let x = [x1, ..., xN ]T ∈ RN

be a graph signal in which the ith element xi denotes the signal value
at node i of an unknown graph G with shift operator S. Further
suppose that we are given a zero-mean signal w with covariance
matrix Cw = E

[
wwT

]
. We say that the graph S represents the

structure of the signal x if there exists a diffusion process in the
GSO S that produces the signal x from the input signal w, that is

x = α0

∏∞
l=1(I− αlS)w =

(∑∞
l=0 βlS

l
)
w. (1)

When w is white (i.e., Cw = I), (1) is equivalent to saying that the
graph process x is stationary in S; see [3] and Section 2.1 for further
details. While S encodes only one-hop interactions, each successive
application of the shift in (1) percolates w over G; see e.g. [4]. The
justification to say that S represents the structure of x is that we
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can think of the edges of S as direct (one-hop) relations between
the elements of the signal. The diffusion described by (1) generates
indirect relations. Our goal is to recover the fundamental relations
described by S from a setX :={x(p)}Pp=1 of P independent samples
of a non-stationary random signal x, as well as realizations of w, or,
knowledge of Cw. This additional information on the input w is the
price paid to accommodate non-stationary x, and is not needed when
identifying the structure of stationary graph signals [5].
Relation to prior work. Since networks typically encode similari-
ties between nodes, several topology inference approaches construct
graphs whose edge weights correspond to nontrivial correlations or
coherence measures between signal profiles at incident nodes [6, 7].
Going beyond pairwise interactions and acknowledging that the ob-
served correlations can be due to latent network effects, alterna-
tive methods rely on partial correlations [6, 8], Gaussian graphical
models [9–12], structural equation models [13–15], Granger causal-
ity [7, 16], or their nonlinear (kernelized) variants [17, 18]. Differ-
ently, recent graph signal processing (GSP)-based network inference
frameworks postulate that the network exists as a latent underlying
structure, and that observations are generated as a result of a network
process defined in such graph [5, 19–22]. Different from [19–21]
that operate on the graph domain, the goal here is to identify graphs
that endow the given observations with desired spectral (frequency-
domain) characteristics. Two works have recently explored this ap-
proach by identifying a GSO given its eigenvectors [5, 22], but both
rely on observations of stationary graph signals.
Paper outline. In Sec. 2 we formulate the problem of identifying a
GSO that explains the fundamental structure of a random signal dif-
fused on a graph. When w is white, such a problem was shown in [5]
to be underdetermined and related to the concept of stationarity of
graph signals [3, 23]. While for stationary x the sought GSO shares
its eigenvectors with the signal’s covariance matrix, in the general
(non-stationary) setting dealt with here this no longer holds. Still,
the graph’s eigenvectors are preserved by the polynomial graph fil-
ter that governs the underlying diffusion dynamics. This motivates a
novel two-step network topology inference approach whereby we: i)
identify the GSO’s eigenbasis from a judicious graph filter estimate;
and ii) rely on these spectral templates (ST) to recover the GSO by
estimating its eigenvalues. Different from [5], the additional system
identification step requires extra information on the excitation signal
w (Sec. 3). Numerical tests in Sec. 4 show the effectiveness of this
approach in recovering the topology of social and brain networks.

2. PROBLEM STATEMENT

Consider identifying graphs that explain the structure of a random
signal x, meaning that there exists a diffusion process in the GSO
that can generate the observed signal. Alternatively, we can say that
the goal is to recover the GSO which encodes direct relationships be-
tween the elements of x from observable indirect relationships gen-
erated by a diffusion process. To formally state the problem, start by
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assuming that S is symmetric. Define the eigenvector matrix V :=
[v1, . . . ,vN ] and the eigenvalue matrix Λ := diag(λ1, . . . , λN ) to
write S = VΛVT . Now observe that while the diffusion expres-
sions in (1) are polynomials on the GSO of possibly infinite degree,
the Cayley-Hamilton theorem implies they are equivalent to polyno-
mials of degree smaller than N . Upon defining the vector of coeffi-
cients h := [h0, . . . , hL−1]T and the graph filter H :=

∑L−1
l=0 hlS

l,
the generative model in (1) can be rewritten as

x =
(∑L−1

l=0 hlS
l
)
w = Hw (2)

for some particular h andL ≤ N . Fundamental for the present paper
is to note that since H is a polynomial on S [1]: 1) all graph filters
have the same eigenvectors, and 2) such eigenvectors are the same
than those of the shift. In other words, while the diffusion implicit in
H obscures the eigenvalues of the GSO, the eigenvectors V remain
as ST of the underlying network topology. Next, Sec. 2.1 describes
how to leverage (2) to obtain the ST from a set of nodal observations.
Sec. 2.2 outlines how to use the ST to recover the desired GSO.

2.1. Stationary versus non-stationary observations

In this section we suppose that the set of observations X :=

{x(p)}Pp=1 correspond to random realizations of a process x ad-
hering to the generative model in (2). The ultimate goal is to use
the available observations to estimate the ST of the filter (hence the
eigenvectors of the GSO) that governs the diffusion in (2).

To that end, suppose first that w is white (i.e., Cw = I). Then
the covariance matrix of x is Cx := E[xxT ] = E[Hw(Hw)T ] =
HE[wwT ]H = HH. Using the spectral decomposition of S to ex-
press the filter as H =

∑L−1
l=0 hl(VΛVT )l = V(

∑L−1
l=0 hlΛ

l)VT ,
we can write the covariance matrix as Cx = V

∣∣∑L−1
l=0 hlΛ

l
∣∣2 VT ,

where the squared-modulus operator | · |2 is applied entrywise. Such
covariance expression is precisely the requirement for a graph signal
to be stationary on S [3, Def. 3]. Remarkably, if x is stationary or
equivalently, if w is white, the eigenvectors of the shift S, the filter
H and the covariance Cx are all the same. As a result, a simple
method to estimate V from the observations {x(p)}Pp=1 is to form
the sample covariance Ĉx and use its eigenvectors as ST [5].

In this context, the broader focus of the present paper is on iden-
tifying the GSO S that is considered to be the best possible de-
scription of the structure of a non-stationary signal x = Hw [cf.
(2), where w is not white]. For generic (non-identity) input covari-
ance matrix Cw, we face the challenge that the signal covariance
Cx = HCwH is no longer simultaneously diagonalizable with S.
This rules out using the eigenvectors of the sample covariance Ĉx as
ST of S. Still, as argued following (2) the eigenvectors of the GSO
coincide with those of the graph filter H that governs the underlying
diffusion dynamics. This motivates using realizations of observed
signals together with additional information on the excitation inputs
wm (either realizations of the graph signals or their covariance ma-
trices Cw,m [15]) to identify the filter H, with the ultimate goal of
estimating its eigenvectors V. This is the subject dealt with in Sec.
3, but before we close the loop showing how to find S given its ST.

2.2. Using the spectral templates to recover the shift

If the ST of the GSO are known, recovery of S amounts to selecting
its eigenvalues. Since the problem is underdetermined (there are
as many GSO as eigenvalues), we say that the GSO of interest is
optimal in some sense. To be more precise, we can introduce criteria
in the form of generic cost functions f(S,λ) and find the GSO as

S∗ := argmin
{S,λ}

f(S,λ), s. to S =

N∑
k=1

λkvkvT
k , S ∈ S, (3)

where λ = [λ1, ..., λN ]T , and S is a convex set that specifies the
type of GSO we want to identify [5]. Also, we wrote VΛVT =∑N

k=1 λkvkvT
k to emphasize that since the vk are known, the equal-

ity constraints in (3) are linear on the unknown eigenvalues λk.
Criteria. Possible choices for the criteria in (3) are to: (i) Adopt
f(S,λ) = ‖S‖F , which finds a GSO minimizing the total energy
stored in the weights of the edges. (ii) Make f(S,λ)=‖S‖∞, which
yields GSOs for graphs with uniformly low edge weights. This can
be meaningful, e.g., when identifying graphs subject to capacity con-
straints. (iii) Minimize the `0 norm f(S,λ) = ‖S‖0 which is non-
convex, but of widespread interest in identifying sparse graphs (e.g.,
of direct relations among signal elements).
Constraints. The constraint S ∈ S in (3) incorporates a priori
knowledge about S. If we let S = A represent the adjacency matrix
of an undirected graph with non-negative weights and no self-loops,
we can explicitly write S as follows

SA :={S |Sij ≥ 0, S∈HN, Sii = 0,
∑

j Sj1 =1}. (4)

The first condition in SA encodes the non-negativity of the weights
whereas the second condition incorporates that G is undirected,
hence, S must belong to the set HN of real and symmetric N×N
matrices. The third condition encodes the absence of self-loops,
thus, each diagonal entry of S must be null. Finally, the last condi-
tion fixes the scale of the admissible graphs by setting the weighted
degree of the first node to 1, and rules out the trivial solution S=0.
Other GSOs (e.g., Lc and its normalized variants) can be accommo-
dated in our framework via minor adaptations to S; see [5].
Robust formulations. While (3) assumes perfect information on the
ST, modified formulations that can accommodate noisy observations
and model mismatches are of interest. Tractable relaxations of (3)
to estimate λ while being robust to errors stemming from the eigen-
vector estimation step are proposed in [24]; see also Sec. 4.

3. INFERRING ST FROM NON-STATIONARY SIGNALS

For m = 1, . . . ,M diffusion processes on G, we assume that the
observed non-stationary signal xm corresponds to an input wm dif-
fused by an unknown graph filter H =

∑L−1
l=0 hlS

l (which encodes
the structure of the network via S). In this section we show how ad-
ditional information about the excitation wm can be used to identify
H and, as byproduct, its eigenvectors V.

3.1. Input-output graph signal realization pairs

Suppose first that realizations ofM output-input pairs {xm,wm}Mm=1

are available. The goal is to identify a filter H such that the observed
signal xm and the predicted one Hwm are close in some sense. Us-
ing the workhorse least-squares (LS) cost εm(H) =‖xm−Hwm‖22,
the filter can then be estimated as

H∗=argmin
H∈HN

M∑
m=1

εm(H), where εm(H)=‖xm−Hwm‖22. (5)

Several properties of the solution H∗ of (5) are stated next 1.

Proposition 1 Define the matrices W = [w1, ...,wM ] and X =
[x1, ...,xM ]. Then the filter H∗ that solves (5) can be found as

vec(H∗) =
(
(WT )† ⊗ IN

)
vec(X). (6)

Moreover, ifM≥N and W is full rank, the minimizer H∗ is unique.

1Prop. 1 is agnostic to the symmetry in H. Although leveraging symme-
try is straightforward, it overloads notation and hinders clarity of exposition.
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Proof: First, note that the cost in (5) can be compactly rewritten as
‖X −HW‖2F . Using the Kronecker product and the vec operator,
we can further rewrite it as ‖X −HW‖2F = ‖ vec(X) −

(
WT ⊗

IN
)

vec(H)‖22. This LS cost can be minimized using the Moore-
Penrose pseudoinverse as vec(H∗) =

(
(WT )⊗IN

)†
vec(X).Not-

ing that
(
(WT )⊗IN×N

)†
=
(
(WT )†⊗I†N

)
, (6) follows. Regard-

ing uniqueness, it holds that if (WT )⊗ IN×N has rank at least N2,
then the N2 × 1 vector vec(H∗) minimizing ‖ vec(X) −

(
WT ⊗

IN
)

vec(H)‖22 is unique. Since rank(IN ) = N , this is guaranteed
if rank(WT ) = rank(W) = N . �

Proposition 1 asserts that if the excitation input set {xm}Mm=1 is suf-
ficiently rich – i.e., if M ≥ N and the excitation signals are linearly
independent –, the entries of the generating filter H can be found as
the solution of an LS problem. As explained at the beginning of Sec.
3, once H∗ is estimated using (6), the next step is to factorize the
filter as H∗ = VH∗ΛH∗V

T
H∗ and use V = VH∗ as input for the

GSO identification problem (3), or its robust variant in Sec. 4.

3.2. Input covariance and positive semidefinite filters

In a number of applications, realizations of the excitation input
wm may be challenging to acquire, but information about the
statistical description of wm could still be available. To be spe-
cific, assume that the excitation inputs are zero mean and their
covariance Cw,m = E[wmwT

m] is known. Further suppose
that for each input wm, we have access to a set of observations
{x(p)

m }Pm
p=1, which are then used to estimate the output covariance as

Ĉx,m = 1
Pm

∑Pm
p=1 x

(p)
m (x

(p)
m )T . Since under (2) the ensemble co-

variance is Cx,m = E[xmxT
m] = HCw,mH, the aim is to identify

a filter H such that matrices Ĉx,m and HCw,mH are close.
In this section, we investigate the more favorable case where

the filter H is a positive semidefinite (PSD) matrix. Such filters
arise, for example, in Laplacian diffusion processes of the form x =
(
∑∞

l=0 β
lLl

c)w with β > 0, where the shift Lc is PSD and the filter
coefficients hl = βl are all positive. To select a convenient distance,
note that matching covariance matrices Ĉx,m and HCw,mH using
an LS metric is not trivial because the resultant cost is a fourth order
polynomial on the entries of H. For that reason, we leverage the fact
that the square root of symmetric PD matrices is well defined and
consider the matching error ε̄m(H) := ‖(C1/2

w,mĈx,mC
1/2
w )1/2 −

C
1/2
w,mHC

1/2
w,m‖2F , where (·)1/2, when applied to matrices, denotes

the principal square root. This matching error is convex in H and
the filter can be thus identified as

H∗ = argmin
H∈H++

N

M∑
m=1

ε̄m(H), where (7)

ε̄m(H) = ‖(C1/2
w,mĈx,mC1/2

w )1/2 −C1/2
w,mHC1/2

w,m‖2F ,

withH++
N standing for the set of symmetric and PSD matrices. The

following proposition offers insights on the solution to (7).

Proposition 2 From the matrices W = [W1, ...,WM ]T and
X = [X1, ...,XM ]T , where Wm := C

1/2
w,m ⊗ C

1/2
w,m and

Xm := (C
1/2
w,mĈx,mC

1/2
w )1/2. Then, the filter H∗ that solves

(7) can be found as
vec(H∗) = W† vec(XT ). (8)

Moreover, if M = 1 and matrix Cw,1 is full rank, the minimizer H∗

is unique and can be found as

H∗ = C
−1/2
w,1

(
C

1/2
w,1Ĉx,1C

1/2
w,1

)1/2
C
−1/2
w,1 . (9)

Proof: To show (8) one can follow steps similar to those for (6)
in Proposition 1. To show the identifiability result for M = 1,
note that the cost ε̄1(H) is minimum if H can be selected to sat-
isfy (C

1/2
w,1Ĉx,1C

1/2
w,1)1/2 = C

1/2
w,1HC

1/2
w,1, so that ε̄1(H) is zero.

Left and right multiplying both sides by C
−1/2
w,m yields (9). �

Proposition 2 demonstrates that the assumption of H ∈ H++
N gives

rise to a strong identifiability result. Indeed, if {Cx,m}Mm=1 are
known perfectly, identifiability and consistency are attained even for
M = 1. The reason is that although the inverse mapping from Cx,m

to H requires finding a square root (this is a problem because multi-
ple roots exist), only one of them is symmetric and PSD.

3.3. Input covariance and generic filters

Here we investigate the filter identification problem for a generic
symmetric H. As in Sec. 3.2, the problem is to identify a fil-
ter H that drives the observed covariances {Cx,m}Mm=1 close to
{HCw,mH}Mm=1, the latter which can be formed using input co-
variance information. Since the filter is not PSD, using square roots
is not prudent here. Hence, one can instead adopt the ordinary LS
cost ε̃m(H) = ‖Ĉx,m −HCw,mH‖2F and estimate the filter as

H∗ = argmin
H∈HN

M∑
m=1

ε̃m(H), (10)

where ε̃m(H)=‖Ĉx,m −HCw,mH‖2F .

The above problem is a non-convex fourth order polynomial opti-
mization, which can potentially have multiple solutions. Since find-
ing H∗ is challenging, we seek efficient algorithms able to find sta-
tionary solutions. To that end, we introduce the auxiliary variables
HL and HR and reformulate (10) as a bi-convex problem with linear
constraints HL = HR = H, namely

{H∗L,H∗R}= arg min
HL∈HN ,HR∈HN

M∑
m=1

‖Ĉx,m−HLCw,mHR||2F (11)

s. to HL = HR

Problem (11) can be tackled using the Alternating Direction Method
of Multipliers (ADMM) [25], which has been applied to a wide vari-
ety of linearly constrained convex and non-convex problems. Since
multiple local optima exist, we run the algorithm for I random ini-
tializations and among the I estimated filters we select the one whose
eigenvectors lead to the sparsest graph shift S; see also Sec. 4.

Since (11) is non-convex, in general identifiability and con-
sistency cannot be guaranteed. As discussed in Sec. 3.2, this is
somehow expected since the mapping from H to the observed
covariance is quadratic and hence, multiple feasible solutions (as
many as square roots) exist. Conceivably, as M increases the num-
ber of feasible solutions will decrease and the problem can become
identifiable. Formalizing this requires imposing conditions on the
eigenspace of the input covariance matrices {HCw,mH}Mm=1. For
example, one can show that if all covariances have the same eigen-
vectors, the problem remains non identifiable even for high values of
M . Last but not least, defining error metrics tailored to the quadratic
mapping between H and Cx and giving rise to a more tractable
optimization is also of interest, but left as future work.
Remark 1 The formulations in Secs. 3.1 and 3.3 can be combined
to exploit multiple sources of information. This can be useful if both
input covariances and pairs of input-output realizations are available.
It is also relevant in scenarios where the inputs are not zero-mean
but their first and second moments are known. Defining µ̂x,m :=
1

Pm

∑Pm
p=1 x

(p)
m and µw,m := E[wm], a natural cost would be
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Fig. 1: (a) Recovery error for FIR and IIR filters versus number of observed signals in noiseless (top) and noisy (bottom) settings. (b) Error
in recovering a social network as a function of the number of opinion profiles observed and parametrized by the number of topics M . (c)
Recovery error for the proposed method and the algorithm in [5] as a function of M , the number of observed sample covariance matrices.

ε̌(H) = β1
∑M

m=1 ‖µ̂x,m − Hµw,m‖22 + β2
∑M

m=1 ε̃m(H),
where β1 and β2 are tuning constants and ε̃m(H) is defined in (10).

4. NUMERICAL TESTS

We study the recovery of two real-world graphs to assess the perfor-
mance of the proposed network topology inference algorithms. We
first obtain estimates V̂ of the GSO eigenvectors under the three set-
tings described in Secs. 3.1-3.3. Given those ST we form S′ :=∑N

k=1 λkv̂kv̂T
k and search for a sparse shift S that is close to S′,

namely we solve the convex problem

Ŝ∗ := argmin
{S,λ,S′}

‖S‖1 (12)

s. to S′ =
∑N

k=1 λkv̂kv̂T
k , S ∈ S, ‖S− S′‖F ≤ ε.

Brain graph. Consider a brain graph G with N = 66 nodes or
neural regions and edge weights given by the density of anatom-
ical connections between regions [26]. Denoting by S = A the
weighted adjacency of the brain graph, we consider two types of
filters H1 =

∑2
l=0 hlA

l and H2 = (I + αA)−1, where the coef-
ficients hl and α are drawn uniformly on [0, 1]. We then generate
M random input-output pairs {wm,xm}Mm=1 (cf. Sec. 3.1), where
signals are filtered by either H1 or H2, and estimate the filter using
(6). Problem (12) with V̂ given by the eigenvectors of the estimated
filter is then solved in order to infer the brain graph. In Fig. 1-(a)
(top) we plot the recovery error ‖Ŝ∗ − S‖F /‖S‖F as a function of
M for both types of filters. First, notice that the performance is in-
dependent of the filter type. More importantly, for M ≥ N , the
optimal filter estimation is unique (cf. Proposition 1) and leads to
perfect recovery. We also consider the case where the observation
of the output signals xm is noisy; see Fig. 1-(a) (bottom). For this
latter case, even though the estimation improves with increasing M ,
a larger number of observations is needed to guarantee successful
recovery of the brain graph.
Social network. We consider the social network of Zachary’s karate
club [27] represented by a graph G consisting of N = 34 nodes
or members of the club and undirected edges symbolizing friend-
ships among them. Denoting by L the normalized Laplacian of G,
we define the graph shift operator S=I−αL with α=1/λmax(L),
modeling the diffusion of opinions between the members of the club.
A signal x can be regarded as a unidimensional opinion of each club
member regarding a specific topic, and each application of S can
be seen as an opinion update. Our goal is to recover L – hence,
the social structure of the Karate club – from the observations of
opinion profiles. We consider M different processes in the graph –
corresponding, e.g., to opinions on M different topics – and assume
that an opinion profile xm is generated by the diffusion through the

network of an initial signal wm. More precisely, for each topic
m = 1, . . . ,M , we model wm as a zero-mean process with known
covariance Cw,m. We are then given a set {x(p)

m }Pp=1 of opinion pro-
files generated from different sources {w(p)

m }Pp=1 diffused through a
filter of unknown nonnegative coefficients β. From these P opin-
ion profiles we build an estimate Ĉx,m of the output covariance and,
leveraging the fact that S is PSD and β ≥ 0 (cf. Sec. 3.2), we esti-
mate the unknown filter H∗ as in (9). Lastly, we use the eigenvectors
V̂ of H∗ to solve (12), where S is modified accordingly for the re-
covery of a normalized Laplacian; see [24]. In Fig. 1-(b) we plot
the shift recovery error as a function of the number of observations
P and for three different values of M . As P increases, the esti-
mate Ĉx,m becomes more reliable entailing a better estimation of
the underlying filter and, ultimately, leading to more accurate eigen-
vectors V̂. Hence, we observe a decreasing error with increasing
P . Moreover, for a fixed P , the error in the estimation of Ĉx,m can
be partially overcome by observing multiple processes, thus, larger
values of M lead to smaller errors.

Finally, we use the same graph to generate input-output covari-
ance pairs {Cw,m,Cx,m}Mm=1 and evaluate the performance of the
method in Sec. 3.3. Signals are generated using the filter H1 =∑2

l=0 hlA
l, where the coefficients are drawn randomly on [0, 1].

We first estimate the ST by solving (11), and then use (12) to recover
the GSO. Fig. 1-(c) depicts the recovery error versus M for two
different approaches – the proposed one and its counterpart in [5]
for stationary signals. First, we notice that as M increases, for the
proposed method the recovery error decreases monotonically. For
instance, we can successfully recover almost all the edges with 9 ob-
served covariances. As expected, for M > 1 the proposed method
outperforms the algorithm in [5] which uses the output covariance
eigenvectors as ST.

5. CONCLUSIONS

We studied the problem of inferring a network from non-stationary
signals diffused on the unknown graph. Relative to the stationary
setting, the main challenge is that the GSO eigenvectors differ from
those of the signal covariance matrix. To overcome this hurdle, we
leverage that the sought eigenbasis is preserved by the polynomial
graph filter that governs the diffusion process. As a result, the novel
approach is to first identify the GSO eigenvectors from a judicious
graph filter estimate, and then we rely on these spectral templates
to estimate the eigenvalues by imposing desirable properties on the
graph to be recovered; e.g., edge sparsity. We propose different es-
timators of the diffusion filter depending on whether realizations,
or, second-order statistical information is available from the input-
output graph signal pair. The overall network topology inference
pipeline is validated on social and structural brain networks.
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