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ABSTRACT update the least-squares estimate, mitigating the computation burden
. . f resolving a batch least-squares. The computation cost can be fur-
The dell_Jge of networked _blg_data m_otlvates the c_ievelopmeq er reduced through using the idea of data-adaptive censd@ijng [
of computation- and communication-efficient network |m‘ormat|on.|.herein the usefulness of an observation is measured by its innova-

processing algorithms. In this paper, we propose two data-adapti\{ n and less informative data is discarded. On the other hand, the
censoring strategies that significantly reduce the computation al '

2= o . stributed versions of RLS, which solve linear regression problems
communication costs of the distributed recursive least-squares (

- - - : defined over distributed networks, are proposeddn [n a D-RLS
RLS) algorithm. Through introducing a cost function thatunde”ate%lgorithm, a node updates its local esti?na?e of th]e Lnknown signal,

the importance of those observations with small innovations, we d&z i1 is common to the whole network. from both its local obser-

v_elop the_first censoring strateg_y based on the alternating minimiz%iations and the local estimates of its n,eighbors. As time evolves,

:g?oﬁlgvc;:gnn; zg?umeissi;oecr?sa:;ttla?j Nﬁmogor:]netl:'; (tji.or|1t :\éesofs::guéll the local estimates reach a consensual value, which is the same as
' p he centralized RLS solution. This paper takes advantages of&joth [

cation costs are further reduced by the second censoring strate d | by proposing censored and distributed RLS algorithms that

which prohibits a n_ode updat?ng and_ tra_nsmitting its local eStimat%ccommodate for linear regression applications over networks.

to neighbors when its current innovation is less than a threshold. For Different to our setting that the network is fully distributed and

ggf/r;t?é?tigglﬁ/?a’nasz":slti ?2;%?10: t;Orr Z?Irz(t:itc')ngft(:]aet;hrrees:;!gr?f.;_nhodes are only able to communicate with their neighbors, most of
9 A larg ) hﬁe existing distributed censoring algorithms consider the network

proposed censorec_i D-RLS algorithms guarantee convergence to t h a fusion center. Their basic idea is that every node determines

optimal argument in the mean-square deviation sense. Numerlc\é\i '

experiments validate the effectiveness of the proposed alaorithms likelihood ratio for its local data, and only transmits the local data
p prop 9 "to the fusion center for further processing when the likelihood ra-

Index Terms— Distributed networks, distributed recursive tio exceeds a threshold. The thresholds are solved by minimizing

least-squares (D-RLS), data-adaptive censoring the probability of error in]. Communication constrains are further
taken into account ing]. Fusion over fading channels in a wireless
1. INTRODUCTION sensor network is considered ifj [ Practical issues such as joint de-

pendence of sensor decision rules, randomization of decision strate-

Nowadays, various networks are generating massive streaming dagies and and partially known distributions are considere@linihe
Examples include a wireless sensor network, where a large numbgfork of [9] considers the impact of quantized communications on
of inexpensive sensors cooperate to monitor environment, or a dag&nsoring and the resulting mean-square error.
center network, where a group of servers collaboratively serve user Other than the star topology discussed in the above pajiéjs, [
requests. Since a single node has limited computation and/or stdfvestigates the censoring strategy for a tree structure. If one node
age resources, distributed information processing is preferable oveh@s a local likelihood ratio larger than a threshold, then it local da-
|arge_sca|e networl{l_ll_ In this paper, we focus on the distributed lin- tum is sent to its parent node. A fU”y distributed Setting is consid-
ear regression problem and devote to developing computation- arffed in [L1], where every node determines whether to transmit its
communication-efficient distributed recursive least-squares (D-RLSlpcal estimate to its neighbors by comparing its local estimate and
algorithms. the weighted average of the neighboring ones. This approach mit-
The main technique we adopt to reduce computation and corigates the communication cost. We further consider the reduction
munication costs is data-adaptive censoring, which utilizes the reaf the computation cost in this paper. We would also like to point
dundancy of big data. Upon receiving an observation, every nod@ut that the censored distributed linear regression algorithrhdj [
determines whether it is informative or not. Less informative obserthough sharing a similar name as our work, considers how to handle
vations are discarded; meanwhile, data exchange between neighb8artially known or noise-corrupted observations in order to correct
ing nodes occurs only when it is necessary. We propose two cefias. This is different to our goal of reducing computation and com-
sored D-RLS algorithms that are able to achieve the same regressifiinication costs for distributed linear regression.
accuracy as their non-censored counterpart, but incur significantly
smaller computation and communication burdens. 1.2. Our Contributions and Paper Organization

This paper proposes two data-adaptive online censoring strategies
1.1. Related Works for distributed linear regression. The proposed censored D-RLS al-
RLS algorithms are well celebrated in centralized linear regressiogorithms incur low computation and communication costs that are
problems R]. When linear observations of an unknown signal areimportant to networked big data applications, while guarantee the
given in an online manner, an RLS algorithm is able to recursivelyquality of linear regression in theory.
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In Section2, we formulate the D-RLS problem (Secti@ri) and P;(t) = Mp;(t — 1) + hy(t)x;(t) 3)
rewrite the D-RLS algorithm proposed id][to a new form (Sec-
tion 2.2), which motives the development of two censoring strate-Using <I>;1(t) andt;(t), nodej updates its local estimasg (¢):
gies (Sectior2.3). Section3 provides theoretical results, including y .
the derivation of the first censoring strategy (Sectof), conver- R vi(t—1)—vi(t-1)
gence analysis of the two censoring strategies (Seét@nas well si(t) = ®; (1) <¢j (t) - Z 2 ) Q)
as the rule of setting the censoring threshold (Se@i@ Numer- JEN;
ical experiments in SectioA demonstrate the effectiveness of the ) o o ) .
proposed censored D-RLS algorithms. vi (t — 1) is the Lagrange multl_ph'er c_)f n(_)dﬁfor its neighborj _at
Notation. Lower- (upper-) case boldface letters denote columntime? — 1. The Lagrange multiplier is given by the Stmmation of
vectors (matrices)(-)”, || - || and E[-] stand for transpose, 2-norm the previous differences between ngdend its neighboy’:
and expectation, respectivelytr(X), Amin(X) and Amax(X) are " .
trace, minimum eigenvalue and(m;ximurg e)igenvalue (of zna(r,ix vi(t=1)=v;(t—-2)+ g[sf‘(t -1 =spt-1)] (5
respectively.l{(a, b) denotes the uniform distribution withia, b]. ) .
N (1, 0%) denotes the Gaussian distribution with mgaand vari- £ IS @ positive constant.

ances?. ¢(t) = (1/v2r)exp(—t?/2) denotes the standardized Below we rewrite the D-RLS algorithm to an equivalent form,
Gaussian probability density function, amiz) — f+oc B(t)dt is which reveals its connection with the centralized RLS algorithm,

. ) AT . as well as motivates the idea of data-adaptive censoring. Detailed
the associated complementary cumulative distribution function. S . . ; -
derivation of the equivalence is omitted due to the page limit. The

2 ALGORITHM DEVELOPMENT updat_e 0f<I>;_1(t) remains the same ag)( However, the update of
s;(t) is rewritten to:
This section introduces the online linear regression problem defined -1 T
over networks and revisits the distributed recursive least-squares (D- 57 (1) =85 (t = 1) + @, (t)h; (t)[z; (t) — h; ()s;(t — 1)]
RLS) algorithm. Two data-adaptive censoring strategies are pro- _ Bq,fl(t)gj (t—1) (6)
posed to reduce the computation and communication costs. 27

2.1. Problem Statement Hered;(t) is a new Lagrange multiplier whose update is given by:

Consider a bidirectionally connected network wifhnodes, de- 6;(t) =6;(t—1)
scribed by a graply = {V, €}, whereV is the set of nodes with + S (1) — s (£)] — A si(t —1) —sa(t—1)] (7
cardinality]V| = J and€ is the set of edges. Each nogés only y;v-[ i () = sy (1)] j,esz[ (=1 = syt =110
able to communicate with its one-hop neighbors where the neighbor ! !
set is denoted byV; C V. The distributed network is deployed to Observe thad; (t) stores the exponentially weighted summation of
estimate a real vectap € R”. Ateach time instant = 0,1,...,  the differences between the local estimate of ngdend all the
nodej receives a scalar observatian(t) € R by measuringso  neighboring local estimates. Interestingly, if the network is discon-
with a regression vectd, (t) € R. The measurement equation is nected and the nodes are isolated, the Lagrange multiliey = 0
z;(t) = hj (t)so + €;(t), wheree; (t) follows N (0, o5). ~and the update of; (t) is very close to centralized RLR[13]. That
Our goal is to devise computation- and communication-efficients, the current estimate is modified from the previous one using the
distributed online algorithms that solve the following exponentially- prediction errorz; (t) — h]-T(t)sj (t — 1), which is also termed as
weighted least-squares (EWLS) problem: innovation On the other hand, if the network is connected, nodes
. must consider their neighboring estimates, which provide new infor-
R . — T T 2 mation from the network other than solely from their own observa-
ewls = j — h; 1 . _ L
Seuts (1) = arg msmz Z ATl () 5 (7)s] @ tions. The tern(p/2)®; L(t)d,(t — 1) in (6) can also be treated as
a Laplacian smoothness operator on the graph, which encourages all
Here 8.5 (t) is the EWLS estimator at timeand A € (0,1]is  the nodes to reach a consensual estimate.

7=0;=1

a forgetting factor. Note that wheh < 1, the importance of past In D-RLS, (2) has a computational complexity 6#(3p°/2),
measurements is exponentially attenuated, which enables trackifgminated by the multiplications in calculatidg; * (t — 1)h; (t) as
of a non-stationary process. well as the product o@j’l(t —1)h;(¢) and its transpose. Similarly,
- (6) has a computational complexity 6#(2p®), dominated by the
2.2. D-RLS Revisited multiplications in calculating® ;" (t)h; () and & (£)d;(t — 1).

The D-RLS algorithm based on the alternating minimization algo-The cost of computing7) is minor. Regarding communication cost,
rithm is given as follows 4]. At time ¢, node; receives a scalar after every iteratiort, node;j needs to transmit its local estimate
observationz; (¢) and a companion regression vedigr(t). It starts ;) toits neighbors and receive estimasest) from all neighbors
by updating a covariance matrii; ' (¢) from the previous one and J € M. The computation cost of the original D-RLS recursi@h (

the new regression vector: (3), (4) and §) is close to that the new forn2), (6) and (7), except
. i that @) has a computation cost 6(p?) other thanO(2p?) in (6).
() =28 (t-1) Meanwhile, the original form requires neighboring nogemd;’ to
/\*1<I>].‘1(t _ 1)hj(t)h]T(t)<I>j‘1(t -1 exchangev;(t) andv;/ (t) in addition tos; () ands; (t).
A+ hf(t)@;l(t — Dh;(t) 2.3. Censored D-RLS Strategies

Then nodej updates a variable ;(¢) that stores the exponentially The D-RLS algorithm has been shown as a powerful tool for dis-
weighted summation di,; (7)z;(7), 7 =1,--- , ¢ tributed online linear regressiod][ However, its iteration-wise
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Algorithm 1 Censored D-RLS-1 (CD-RLS-1) update of® ' (¢) can be merged to wherever it is needed (say, in

1: Initialize §;(—1), {s;(—1)};=, and{®; *(-1)}/_, (10) and in the next iteration). Meanwhile, id)( the O(p®) mul-

2: foralljeV,t=0,1,...do tiplications @' (t)h; () disappear, and th®(p*) multiplications

3 if |2;(t) —hi (H)s;(t — 1)| < 70;(t) then @' (t)8,(t — 1) remain the same.

4: update@;] (t) using ©) The first censoring strategy still requires every node to commu-

5: updates; () using (LO) nicate with its neighbors at every iteration, and hence does not re-

6: else duce message transmission. In order to also mitigate the commu-

7 updatetb;l(t) using @) nication cost, we propose the second censoring strategy, in which

8: updates; (t) using 6) a node does not do any further computation and and only needs to

9: endif receive neighboring iterates if its current datum is censored. The in-
10:  computed;(t) using () tuitive idea behind this strategy is that, if the datum is censored, then
11:  transmits;(t) to and receive; (¢) from all j € N/; most likely the current local estimate is sufficiently accurate, and the
12: end for node does not need to modify it using neighboring estimates. Mean-

while, its neighbors do not need its current estimate either, because

Algorithm 2 Censored D-RLS-2 (CD-RLS-2) they have received the same value previously. The second censoring

—— - - - strategy is summarized in Algorithm 2.
1: Initialize 6;(—1), {s;(=1)}j=1 and{®; (=1)}j=,

2: forallj €V, t=0,1,...do 3. THEORETICAL ANALYSIS

3 if |;(t) — hT ()s;(t — 1)| < 70;(t) then

4: receives; (t) fromall j' € N This section sketches the derivation of the first censoring strategy.
5. else Convergence analysis of the two censoring strategies is given. We
6: sets;/(t — 1) as recently received ones from glle \; also address the practical issue of how to set the threstglt).

7 update® ' () using @)

8: updates; (t) using @) 3.1. Derivation of Censored D-RLS-1

9: computed; (t) using )

) . . iy _ To develop the first censoring strategy, we introduce a truncated
12: entgazpsmlts] (t) to and receive, (t) from all j* € N quadratic cost function that is similar to the one used in the censored
12: end for but centralized RLSJ:

o, (1) = hT (1)s] < 70,(t)
fit(s) = [z;(H)—hT ()s]> =720, (1)?

. o . ) ol (8) =05 ()s| > o (t)
computation and communication costs are fixed, no matter the obser-
vations and/or the estimates from neighboring nodes are informativehis new cost function replaces the standard quadratic cost function
or not. This fact motivates us to introduce the idea of data-adaptiver; () — hT ()s]* used in (). Also, similar to ], we introduce lo-
censoring to D-RLS, yielding two novel censored D-RLS strategies,

Th diff tto th d RLS alqorith - cal estimate; for every nodeg as well as local estimate‘g" andi?’
°y are drierent 1o e censorec agorithms proposed]in [ for every edgd(j, j'). By forcing all neighboring local estimates to
which focus on centralized online linear regression.

: . .. .. reach aconsensus, at timae have the following separable convex
Ouir first censoring strategy comes from the following intuition: ~." >~ .~ “: .
f : . . minimization problem:
If a given datum(z; (t), h;(¢)) is not informative, we do not have to

use it since its contribution to the local estimate of ngdas well as . AN
to those of the whole network, is limited. To be specific, define the {S@}{}l Z Z AT e (85)- (11)
censoring indicatoe; (t) as =t r=1g=1
ot it il 7
= {0 o0 b Osi -l <7050) Stos; =%,y =% ,% =% €V €N
ci(t) = .
! 1, if [z;(t) — W] ()s;(t — 1)| > To;(t) Using the alternating minimization algorithm and the stochastic

Newton method, we are able to derive the first censoring strategy.
If the innovation|z;(t) — h] (t)s;(t — 1)| is less than a threshold The techniques are close to those usedjrapd [4], but with mod-
T0o;(t), thenc;(t) = 0 and(x;(t), h;(t)) is censored; otherwise ifications to handle the new cost function and simplify the update
c;(t) = Land(x;(t), h;(t)) is used. SectioB.3gives rules fortun-  rules. We leave the detailed derivation to a longer report.
ing the positive constant threshotdand the local estimate of noise

variances; (t)?, whose computations are lightweight. If data cen-3.2. Convergence Analysis

ior(lggja(l)plﬁe(rzl)sa\;vde gLT;lr? throw away the current datum by Iettlnqn this section, we provide convergence properties of the two cen-
J ’ soring strategies when the forgetting facfor= 1. We make the
@;1(15) - )\*1@;1 (t—1) (9) following assumption on the linear regression model.
Likewise, lettingz;(¢t) = 0 andh;(t) = 0 in (6) yields: Assumption 1. Observations obey the linear modeli(t) =
h;(t)so + €;(t), where the noises;(t) ~ MN(0,0?) are inde-
s;j(t) =s;(t—1) — g<1>;1(t)5j (t—1) (10)  pendent over both nodegsand timest. Regression vectorl; ()

are uniformly bounded and independent witf(t). The covari-
The first censoring strategy is summarized in Algorithm 1. Itance matrices oh;(¢) are constant and positive definite, namely,
reducess/7 of the computation cost when the datum is censored aR,; := E[h;(¢)h;(t)"] = 0,xp. Besides{c;(t)h;(t)h] (¢)} is
a certain iteration. To see so, observe that the scalar-matrix mugssumed to be an ergodic process, wHitg(t)} and {c;(¢)} are
tiplications of)\‘1<1>j*1(t — 1) in (9) are not necessary since the assumed to be irrelevant.
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We are interested in the global mean-square deviation (MSD)
[14], which is the summation of the local MSD%4, 16] defined by: —oAs

— = ~CD-RLS-1
100§ CD-RLS-2|

MSD; (t) = Ell[s;(t) = soll’],j = 1,....J

The main theorem is given below.

Global MSD

Theorem 1. Consider the censored D-RLS strategies given by Algo-
rithms 1 and 2. Suppose that for every nadee thresholds; (¢) is
chosen to be; and @;1 (—1) = oI, whered is a positive constant.

If the step size is sufficiently small, then there exits > 0, such

that for all ¢ > ¢, it holds ; 2 s p s
Computational cost x10°
J
2 1
ZE[HSJ(t) _SOH ] 1 ——DALS
j=1 I — = ~GD-RLS-1
TOU i CD-RLS-2| 4
I M Mo In(t)
1 2 2
SZTHSJ'(—D—SOH t— 12
j=1

Global MSD

M, and M, are two constants determined by the parameters
andp, the network Laplacian, as well as the upper bount gft).

Theoreml shows that the global MSD defined in the left hand
side of (L2) converges to zero at the rate ©{1n(¢)/¢). It also in-
dicates that the impact of the initial statgg0) vanishes at a faster o o5 i s 2 25
rate ofO(1/t). The detailed proof is left to a longer version. Amountof cata wansmission o’

N ’ T Fig. 1. Global MSD of the four algorithms versus computation cost
3.3. Threshold Setting and Variance Estimation (TOP) and amount of data transmission (BOTTOM).

The threshold- has significant influence on the performance of the

censoring algorithms. The value oftrades off the estimation ac-

curacy and the computational/communication costs. Here a simpligextp elements, namelyh; (t) = [r;(t +p — 1);...;7;(t)]. Pa-
criterion of settingr is determined by the expected censoring ratiorameters are selected @s= 0.5, 3; follows /(0, 1), and the diving
7*, which is defined as the quotient between the number of cenyhite noisew; (t) follows u(_\/ggwﬁ \/§gw7) Wheregf‘;j follows
sored data and the number of total d&h [The goal is to choose (g, 2). Observation of nodg is subject to additive white Gaussian
an appropriate- such that the actual censoring ratio goes close tqgjse whose covarianced$ = 10~>a; wherea; follows2/(0, 1).

7" whent goes to infinity — since we are dealing with streaming big  \ye compare three approaches, D-RLS based on the alternating
data, the asymptotic property is of particular interest to us. When minimization algorithm4] and the two censored D-RLS algorithms
is large enoughs is very close taso, thus the innovation; (f) —  cp-RLS-1 and CD-RLS-2. The forgetting factar= 1. The com-
hj(t)s;(t —1) = z;(t) — hj (H)so = €(t) ~ N(0,07). N mon parameters are choseryas: 0.02 ands = 30, which leads to
consequencelr(c;(t) = 0) = Pr(|z;(t) — hi (t)s;(t —1)] <  the fastest convergence of D-RLS. For CD-RLS-1 and CD-RLS-2,
7o) ~ Pr(le;(t)] < 7a;) = Pr(le;(t)/o;] < 7) = 1 -2Q(7),  we let the target censoring ratio & = 0.6 such that the threshold
where the last equality comes fram(t) /o; ~ N'(0,1). Therefore, = Q~'((1—0.6)/2) ~ 0.84. The variances? are estimated in

7 =lim oo + D0 Elc;(7)] & 1 — 2Q(7), which implies that  an online manner as given by Secti®8. For all curves obtained by

T=Q (1 —7%)/2). running the algorithms, the ensemble averages are approximated via
If the variancesﬁ are known, one can simply choosg(t) = sample averaging over 100 runs of the experiment.
o;. However, in practical problems;; are often unknown. In this Fig. 1 shows global MSD, which is defined in the left hand side

case, we suggest to updatg(t) in an online manner. Namely, of (12), versus computation cost and amount of data transmission.
oj(t+1)? = (1/t) 25 (x;(7) —h] (7)s0)? = (t—1)0;(t)*/t+ It is easy to imagine that D-RLS is the fastest with respect to the

T=1
(zj(t+1) =hI (¢t + 1)s0)?/t ~ (t — Vo (t)*/t + (z;(t + 1) — number of iterations, while CD-RLS-2 is the slowest due to the ag-
th(t +1)s;(t))?/t. gressive censoring strategy. However, recall that for censored data,
CD-RLS-1 only require®/7 of the computation cost comparing to
4. NUMERICAL EXPERIMENTS D-RLS, while DC-RLS-2 brings almost no computation cost. Tak-

ing into account of the target censoring rati® = 0.6 (actual ratio
This section provides numerical results to validate the effectiveness 0.6304 for CD-RLS-1 and).6285 for CD-RLS-2), the two censor-
of the proposed censoring strategies. We generate a network ofg strategies significantly reduce the computation cost over D-RLS.
J = 15 nodes, which are uniformly randomly deployed within a Regarding the amount of data transmission, which counts the
1 x 1 square. Two nodes within the communication rang®.8f  number of transmitted local estimates in a unicast mode, CD-RLS-1
are neighbors of each other. The observed unknown signal is is the worst because every node needs to transmit its local estimate
dimensional angh = 4. The settings of the measurement equationsto neighbors, no matter its datum is censored or not. However, CD-
are the same as those #].[Define an auxiliary sequenceeg(t) that ~ RLS-2 shows significant improvement over D-RLS, demonstrating
evolves according to; (t) = (1 — ¢)B;7;(t — 1) + /qw;(t). Start-  its potential of reducing both communication and computation costs
ing from r;(¢), the regression vectdr;(¢) is formed by taking the in solving the distributed linear regression problem.
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