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ABSTRACT

The deluge of networked big data motivates the development
of computation- and communication-efficient network information
processing algorithms. In this paper, we propose two data-adaptive
censoring strategies that significantly reduce the computation and
communication costs of the distributed recursive least-squares (D-
RLS) algorithm. Through introducing a cost function that underrates
the importance of those observations with small innovations, we de-
velop the first censoring strategy based on the alternating minimiza-
tion algorithm and the stochastic Newton method. It saves compu-
tation when a datum is censored. The computation and communi-
cation costs are further reduced by the second censoring strategy,
which prohibits a node updating and transmitting its local estimate
to neighbors when its current innovation is less than a threshold. For
both strategies, a simple criterion for selecting the threshold of in-
novation is given so as to reach a target ratio of data reduction. The
proposed censored D-RLS algorithms guarantee convergence to the
optimal argument in the mean-square deviation sense. Numerical
experiments validate the effectiveness of the proposed algorithms.

Index Terms— Distributed networks, distributed recursive
least-squares (D-RLS), data-adaptive censoring

1. INTRODUCTION

Nowadays, various networks are generating massive streaming data.
Examples include a wireless sensor network, where a large number
of inexpensive sensors cooperate to monitor environment, or a data
center network, where a group of servers collaboratively serve user
requests. Since a single node has limited computation and/or stor-
age resources, distributed information processing is preferable over a
large-scale network [1]. In this paper, we focus on the distributed lin-
ear regression problem and devote to developing computation- and
communication-efficient distributed recursive least-squares (D-RLS)
algorithms.

The main technique we adopt to reduce computation and com-
munication costs is data-adaptive censoring, which utilizes the re-
dundancy of big data. Upon receiving an observation, every node
determines whether it is informative or not. Less informative obser-
vations are discarded; meanwhile, data exchange between neighbor-
ing nodes occurs only when it is necessary. We propose two cen-
sored D-RLS algorithms that are able to achieve the same regression
accuracy as their non-censored counterpart, but incur significantly
smaller computation and communication burdens.

1.1. Related Works

RLS algorithms are well celebrated in centralized linear regression
problems [2]. When linear observations of an unknown signal are
given in an online manner, an RLS algorithm is able to recursively

update the least-squares estimate, mitigating the computation burden
of resolving a batch least-squares. The computation cost can be fur-
ther reduced through using the idea of data-adaptive censoring [3].
Therein, the usefulness of an observation is measured by its innova-
tion and less informative data is discarded. On the other hand, the
distributed versions of RLS, which solve linear regression problems
defined over distributed networks, are proposed in [4]. In a D-RLS
algorithm, a node updates its local estimate of the unknown signal,
which is common to the whole network, from both its local obser-
vations and the local estimates of its neighbors. As time evolves,
all the local estimates reach a consensual value, which is the same as
the centralized RLS solution. This paper takes advantages of both [3]
and [4] by proposing censored and distributed RLS algorithms that
accommodate for linear regression applications over networks.

Different to our setting that the network is fully distributed and
nodes are only able to communicate with their neighbors, most of
the existing distributed censoring algorithms consider the network
with a fusion center. Their basic idea is that every node determines
a likelihood ratio for its local data, and only transmits the local data
to the fusion center for further processing when the likelihood ra-
tio exceeds a threshold. The thresholds are solved by minimizing
the probability of error in [5]. Communication constrains are further
taken into account in [6]. Fusion over fading channels in a wireless
sensor network is considered in [7]. Practical issues such as joint de-
pendence of sensor decision rules, randomization of decision strate-
gies and and partially known distributions are considered in [8]. The
work of [9] considers the impact of quantized communications on
censoring and the resulting mean-square error.

Other than the star topology discussed in the above papers, [10]
investigates the censoring strategy for a tree structure. If one node
has a local likelihood ratio larger than a threshold, then it local da-
tum is sent to its parent node. A fully distributed setting is consid-
ered in [11], where every node determines whether to transmit its
local estimate to its neighbors by comparing its local estimate and
the weighted average of the neighboring ones. This approach mit-
igates the communication cost. We further consider the reduction
of the computation cost in this paper. We would also like to point
out that the censored distributed linear regression algorithm in [12],
though sharing a similar name as our work, considers how to handle
partially known or noise-corrupted observations in order to correct
bias. This is different to our goal of reducing computation and com-
munication costs for distributed linear regression.

1.2. Our Contributions and Paper Organization

This paper proposes two data-adaptive online censoring strategies
for distributed linear regression. The proposed censored D-RLS al-
gorithms incur low computation and communication costs that are
important to networked big data applications, while guarantee the
quality of linear regression in theory.

5860978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



In Section2, we formulate the D-RLS problem (Section2.1) and
rewrite the D-RLS algorithm proposed in [4] to a new form (Sec-
tion 2.2), which motives the development of two censoring strate-
gies (Section2.3). Section3 provides theoretical results, including
the derivation of the first censoring strategy (Section3.1), conver-
gence analysis of the two censoring strategies (Section3.2), as well
as the rule of setting the censoring threshold (Section3.3). Numer-
ical experiments in Section4 demonstrate the effectiveness of the
proposed censored D-RLS algorithms.

Notation. Lower- (upper-) case boldface letters denote column
vectors (matrices).(·)T , || · || andE[·] stand for transpose, 2-norm
and expectation, respectively.tr(X), λmin(X) and λmax(X) are
trace, minimum eigenvalue and maximum eigenvalue of matrixX,
respectively.U(a, b) denotes the uniform distribution within[a, b].
N (µ, σ2) denotes the Gaussian distribution with meanµ and vari-
anceσ2. φ(t) = (1/

√
2π)exp(−t2/2) denotes the standardized

Gaussian probability density function, andQ(z) =
∫ +∞

z
φ(t)dt is

the associated complementary cumulative distribution function.

2. ALGORITHM DEVELOPMENT

This section introduces the online linear regression problem defined
over networks and revisits the distributed recursive least-squares (D-
RLS) algorithm. Two data-adaptive censoring strategies are pro-
posed to reduce the computation and communication costs.

2.1. Problem Statement

Consider a bidirectionally connected network withJ nodes, de-
scribed by a graphG = {V, E}, whereV is the set of nodes with
cardinality|V| = J andE is the set of edges. Each nodej is only
able to communicate with its one-hop neighbors where the neighbor
set is denoted byNj ⊂ V . The distributed network is deployed to
estimate a real vectors0 ∈ Rp. At each time instantt = 0, 1, . . .,
nodej receives a scalar observationxj(t) ∈ R by measurings0

with a regression vectorhj(t) ∈ Rp. The measurement equation is
xj(t) = hT

j (t)s0 + εj(t), whereεj(t) followsN (0, σ2
j ).

Our goal is to devise computation- and communication-efficient
distributed online algorithms that solve the following exponentially-
weighted least-squares (EWLS) problem:

ŝewls(t) := arg min
s

t∑
τ=0

J∑
j=1

λt−τ [xj(τ)− hT
j (τ)s]2 (1)

Here ŝewls(t) is the EWLS estimator at timet andλ ∈ (0, 1] is
a forgetting factor. Note that whenλ < 1, the importance of past
measurements is exponentially attenuated, which enables tracking
of a non-stationary process.

2.2. D-RLS Revisited

The D-RLS algorithm based on the alternating minimization algo-
rithm is given as follows [4]. At time t, nodej receives a scalar
observationxj(t) and a companion regression vectorhj(t). It starts
by updating a covariance matrixΦ−1

j (t) from the previous one and
the new regression vector:

Φ−1
j (t) =λ−1Φ−1

j (t− 1)

− λ−1Φ−1
j (t− 1)hj(t)h

T
j (t)Φ−1

j (t− 1)

λ + hT
j (t)Φ−1

j (t− 1)hj(t)
(2)

Then nodej updates a variableψj(t) that stores the exponentially
weighted summation ofhj(τ)xj(τ), τ = 1, · · · , t:

ψj(t) = λψj(t− 1) + hj(t)xj(t) (3)

UsingΦ−1
j (t) andψj(t), nodej updates its local estimatesj(t):

sj(t) = Φ−1
j (t)

(
ψj(t)−

∑

j′∈Nj

vj′
j (t− 1)− vj

j′(t− 1)

2

)
(4)

vj′
j (t− 1) is the Lagrange multiplier of nodej for its neighborj′ at

time t − 1. The Lagrange multiplier is given by the summation of
the previous differences between nodej and its neighborj′:

vj′
j (t− 1) = vj′

j (t− 2) +
ρ

2
[sj(t− 1)− sj′(t− 1)] (5)

ρ is a positive constant.
Below we rewrite the D-RLS algorithm to an equivalent form,

which reveals its connection with the centralized RLS algorithm,
as well as motivates the idea of data-adaptive censoring. Detailed
derivation of the equivalence is omitted due to the page limit. The
update ofΦ−1

j (t) remains the same as (2). However, the update of
sj(t) is rewritten to:

sj(t) =sj(t− 1) + Φ−1
j (t)hj(t)[xj(t)− hT

j (t)sj(t− 1)]

− ρ

2
Φ−1

j (t)δj(t− 1) (6)

Hereδj(t) is a new Lagrange multiplier whose update is given by:

δj(t) =δj(t− 1)

+
∑

j′∈Nj

[sj(t)− sj′(t)]− λ
∑

j′∈Nj

[sj(t− 1)− sj′(t− 1)] (7)

Observe thatδj(t) stores the exponentially weighted summation of
the differences between the local estimate of nodej and all the
neighboring local estimates. Interestingly, if the network is discon-
nected and the nodes are isolated, the Lagrange multiplierδj(t) = 0
and the update ofsj(t) is very close to centralized RLS [2,13]. That
is, the current estimate is modified from the previous one using the
prediction errorxj(t) − hT

j (t)sj(t − 1), which is also termed as
innovation. On the other hand, if the network is connected, nodes
must consider their neighboring estimates, which provide new infor-
mation from the network other than solely from their own observa-
tions. The term(ρ/2)Φ−1

j (t)δj(t − 1) in (6) can also be treated as
a Laplacian smoothness operator on the graph, which encourages all
the nodes to reach a consensual estimate.

In D-RLS, (2) has a computational complexity ofO(3p2/2),
dominated by the multiplications in calculatingΦ−1

j (t− 1)hj(t) as
well as the product ofΦ−1

j (t− 1)hj(t) and its transpose. Similarly,
(6) has a computational complexity ofO(2p2), dominated by the
multiplications in calculatingΦ−1

j (t)hj(t) andΦ−1
j (t)δj(t − 1).

The cost of computing (7) is minor. Regarding communication cost,
after every iterationt, nodej needs to transmit its local estimate
sj(t) to its neighbors and receive estimatessj′(t) from all neighbors
j′ ∈ Nj . The computation cost of the original D-RLS recursion (2),
(3), (4) and (5) is close to that the new form (2), (6) and (7), except
that (4) has a computation cost ofO(p2) other thanO(2p2) in (6).
Meanwhile, the original form requires neighboring nodesj andj′ to
exchangevj(t) andvj′(t) in addition tosj(t) andsj′(t).

2.3. Censored D-RLS Strategies

The D-RLS algorithm has been shown as a powerful tool for dis-
tributed online linear regression [4]. However, its iteration-wise
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Algorithm 1 Censored D-RLS-1 (CD-RLS-1)

1: Initialize δj(−1), {sj(−1)}J
j=1 and{Φ−1

j (−1)}J
j=1

2: for all j ∈ V , t = 0, 1, . . . do
3: if |xj(t)− hT

j (t)sj(t− 1)| ≤ τσj(t) then
4: updateΦ−1

j (t) using (9)
5: updatesj(t) using (10)
6: else
7: updateΦ−1

j (t) using (2)
8: updatesj(t) using (6)
9: end if

10: computeδj(t) using (7)
11: transmitsj(t) to and receivesj′(t) from all j′ ∈ Nj

12: end for

Algorithm 2 Censored D-RLS-2 (CD-RLS-2)

1: Initialize δj(−1), {sj(−1)}J
j=1 and{Φ−1

j (−1)}J
j=1

2: for all j ∈ V , t = 0, 1, . . . do
3: if |xj(t)− hT

j (t)sj(t− 1)| ≤ τσj(t) then
4: receivesj′(t) from all j′ ∈ Nj

5: else
6: setsj′(t− 1) as recently received ones from allj′ ∈ Nj

7: updateΦ−1
j (t) using (2)

8: updatesj(t) using (6)
9: computeδj(t) using (7)

10: transmitsj(t) to and receivesj′(t) from all j′ ∈ Nj

11: end if
12: end for

computation and communication costs are fixed, no matter the obser-
vations and/or the estimates from neighboring nodes are informative
or not. This fact motivates us to introduce the idea of data-adaptive
censoring to D-RLS, yielding two novel censored D-RLS strategies.
They are different to the censored RLS algorithms proposed in [3],
which focus on centralized online linear regression.

Our first censoring strategy comes from the following intuition:
If a given datum(xj(t),hj(t)) is not informative, we do not have to
use it since its contribution to the local estimate of nodej, as well as
to those of the whole network, is limited. To be specific, define the
censoring indicatorcj(t) as

cj(t) =

{
0, if |xj(t)− hT

j (t)sj(t− 1)| ≤ τσj(t)

1, if |xj(t)− hT
j (t)sj(t− 1)| > τσj(t)

(8)

If the innovation|xj(t) − hT
j (t)sj(t − 1)| is less than a threshold

τσj(t), thencj(t) = 0 and (xj(t),hj(t)) is censored; otherwise
cj(t) = 1 and(xj(t),hj(t)) is used. Section3.3gives rules for tun-
ing the positive constant thresholdτ and the local estimate of noise
varianceσj(t)

2, whose computations are lightweight. If data cen-
soring happens, we simply throw away the current datum by letting
hj(t) = 0 in (2) and obtain:

Φ−1
j (t) = λ−1Φ−1

j (t− 1) (9)

Likewise, lettingxj(t) = 0 andhj(t) = 0 in (6) yields:

sj(t) = sj(t− 1)− ρ

2
Φ−1

j (t)δj(t− 1) (10)

The first censoring strategy is summarized in Algorithm 1. It
reduces5/7 of the computation cost when the datum is censored at
a certain iteration. To see so, observe that the scalar-matrix mul-
tiplications of λ−1Φ−1

j (t − 1) in (9) are not necessary since the

update ofΦ−1
j (t) can be merged to wherever it is needed (say, in

(10) and in the next iteration). Meanwhile, in (4), theO(p2) mul-
tiplicationsΦ−1

j (t)hj(t) disappear, and theO(p2) multiplications
Φ−1

j (t)δj(t− 1) remain the same.
The first censoring strategy still requires every node to commu-

nicate with its neighbors at every iteration, and hence does not re-
duce message transmission. In order to also mitigate the commu-
nication cost, we propose the second censoring strategy, in which
a node does not do any further computation and and only needs to
receive neighboring iterates if its current datum is censored. The in-
tuitive idea behind this strategy is that, if the datum is censored, then
most likely the current local estimate is sufficiently accurate, and the
node does not need to modify it using neighboring estimates. Mean-
while, its neighbors do not need its current estimate either, because
they have received the same value previously. The second censoring
strategy is summarized in Algorithm 2.

3. THEORETICAL ANALYSIS

This section sketches the derivation of the first censoring strategy.
Convergence analysis of the two censoring strategies is given. We
also address the practical issue of how to set the thresholdτσj(t).

3.1. Derivation of Censored D-RLS-1

To develop the first censoring strategy, we introduce a truncated
quadratic cost function that is similar to the one used in the censored
but centralized RLS [3]:

fj,t(s) :=

{
0, |xj(t)− hT

j (t)s| ≤ τσj(t)
[xj(t)−hT

j (t)s]2−τ2σj(t)2

2
, |xj(t)− hT

j (t)s| > τσj(t)

This new cost function replaces the standard quadratic cost function
[xj(τ)−hT

j (τ)s]2 used in (1). Also, similar to [4], we introduce lo-

cal estimatesj for every nodej as well as local estimates̄zj′
j andz̃j′

j

for every edge(j, j′). By forcing all neighboring local estimates to
reach a consensus, at timet we have the following separable convex
minimization problem:

min
{sj}J

j=1

t∑
τ=1

J∑
j=1

λt−τfj,τ (sj). (11)

s.t. sj = z̄j′
j , sj′ = z̃j′

j , z̄j′
j = z̃j′

j , j ∈ V, j′ ∈ Nj

Using the alternating minimization algorithm and the stochastic
Newton method, we are able to derive the first censoring strategy.
The techniques are close to those used in [3] and [4], but with mod-
ifications to handle the new cost function and simplify the update
rules. We leave the detailed derivation to a longer report.

3.2. Convergence Analysis

In this section, we provide convergence properties of the two cen-
soring strategies when the forgetting factorλ = 1. We make the
following assumption on the linear regression model.

Assumption 1. Observations obey the linear modelxj(t) =
hj(t)s0 + εj(t), where the noisesεj(t) ∼ N (0, σ2

j ) are inde-
pendent over both nodesj and timest. Regression vectorshj(t)
are uniformly bounded and independent withεj(t). The covari-
ance matrices ofhj(t) are constant and positive definite, namely,
Rhj := E[hj(t)hj(t)

T ] Â 0p×p. Besides,{cj(t)hj(t)h
T
j (t)} is

assumed to be an ergodic process, while{εj(t)} and {cj(t)} are
assumed to be irrelevant.
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We are interested in the global mean-square deviation (MSD)
[14], which is the summation of the local MSDs [15,16] defined by:

MSDj(t) = E[||sj(t)− s0||2], j = 1, . . . , J

The main theorem is given below.

Theorem 1. Consider the censored D-RLS strategies given by Algo-
rithms 1 and 2. Suppose that for every nodei the thresholdσj(t) is
chosen to beσj andΦ−1

j (−1) = δIp whereδ is a positive constant.
If the step sizeρ is sufficiently small, then there exitst0 > 0, such
that for all t ≥ t0 it holds

J∑
j=1

E[||sj(t)− s0||2]

≤
J∑

j=1

M1

t
||sj(−1)− s0||2 +

M2 ln(t)

t
(12)

M1 and M2 are two constants determined by the parametersδ, τ
andρ, the network Laplacian, as well as the upper bound ofhj(t).

Theorem1 shows that the global MSD defined in the left hand
side of (12) converges to zero at the rate ofO(ln(t)/t). It also in-
dicates that the impact of the initial statessj(0) vanishes at a faster
rate ofO(1/t). The detailed proof is left to a longer version.

3.3. Threshold Setting and Variance Estimation

The thresholdτ has significant influence on the performance of the
censoring algorithms. The value ofτ trades off the estimation ac-
curacy and the computational/communication costs. Here a simple
criterion of settingτ is determined by the expected censoring ratio
π∗, which is defined as the quotient between the number of cen-
sored data and the number of total data [9]. The goal is to choose
an appropriateτ such that the actual censoring ratio goes close to
π∗ whent goes to infinity – since we are dealing with streaming big
data, the asymptotic property is of particular interest to us. Whent
is large enough,s is very close tos0, thus the innovationxj(t) −
hT

j (t)sj(t − 1) ≈ xj(t) − hT
j (t)s0 = εj(t) ∼ N (0, σ2

j ). In
consequence,Pr(cj(t) = 0) = Pr(|xj(t) − hT

j (t)sj(t − 1)| ≤
τσj) ≈ Pr(|εj(t)| ≤ τσj) = Pr(|εj(t)/σj | ≤ τ) = 1 − 2Q(τ),
where the last equality comes fromεj(t)/σj ∼ N (0, 1). Therefore,
π∗ = limt→∞ 1

t

∑t
τ=0 E[cj(τ)] ≈ 1− 2Q(τ), which implies that

τ = Q−1((1− π∗)/2).
If the variancesσ2

j are known, one can simply chooseσj(t) =
σj . However, in practical problems,σj are often unknown. In this
case, we suggest to updateσj(t) in an online manner. Namely,
σj(t+1)2 ≈ (1/t)

∑t+1
τ=1(xj(τ)−hT

j (τ)s0)
2 = (t−1)σj(t)

2/t+

(xj(t + 1)− hT
j (t + 1)s0)

2/t ≈ (t− 1)σj(t)
2/t + (xj(t + 1)−

hT
j (t + 1)sj(t))

2/t.

4. NUMERICAL EXPERIMENTS

This section provides numerical results to validate the effectiveness
of the proposed censoring strategies. We generate a network of
J = 15 nodes, which are uniformly randomly deployed within a
1 × 1 square. Two nodes within the communication range of0.3
are neighbors of each other. The observed unknown signal isp-
dimensional andp = 4. The settings of the measurement equations
are the same as those in [4]. Define an auxiliary sequencerj(t) that
evolves according torj(t) = (1− q)βjrj(t− 1) +

√
qωj(t). Start-

ing from rj(t), the regression vectorhj(t) is formed by taking the
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Fig. 1. Global MSD of the four algorithms versus computation cost
(TOP) and amount of data transmission (BOTTOM).

nextp elements, namely,hj(t) = [rj(t + p − 1); . . . ; rj(t)]. Pa-
rameters are selected asq = 0.5, βj follows U(0, 1), and the diving
white noiseωj(t) follows U(−√3σωj ,

√
3σwj ) whereσ2

ωj
follows

U(0, 2). Observation of nodej is subject to additive white Gaussian
noise, whose covariance isσ2

j = 10−3αj whereαj followsU(0, 1).
We compare three approaches, D-RLS based on the alternating

minimization algorithm [4] and the two censored D-RLS algorithms
CD-RLS-1 and CD-RLS-2. The forgetting factorλ = 1. The com-
mon parameters are chosen asρ = 0.02 andδ = 30, which leads to
the fastest convergence of D-RLS. For CD-RLS-1 and CD-RLS-2,
we let the target censoring ratio beπ∗ = 0.6 such that the threshold
τ = Q−1((1 − 0.6)/2) ≈ 0.84. The variancesσ2

j are estimated in
an online manner as given by Section3.3. For all curves obtained by
running the algorithms, the ensemble averages are approximated via
sample averaging over 100 runs of the experiment.

Fig. 1 shows global MSD, which is defined in the left hand side
of (12), versus computation cost and amount of data transmission.
It is easy to imagine that D-RLS is the fastest with respect to the
number of iterations, while CD-RLS-2 is the slowest due to the ag-
gressive censoring strategy. However, recall that for censored data,
CD-RLS-1 only requires2/7 of the computation cost comparing to
D-RLS, while DC-RLS-2 brings almost no computation cost. Tak-
ing into account of the target censoring ratioπ∗ = 0.6 (actual ratio
is0.6304 for CD-RLS-1 and0.6285 for CD-RLS-2), the two censor-
ing strategies significantly reduce the computation cost over D-RLS.

Regarding the amount of data transmission, which counts the
number of transmitted local estimates in a unicast mode, CD-RLS-1
is the worst because every node needs to transmit its local estimate
to neighbors, no matter its datum is censored or not. However, CD-
RLS-2 shows significant improvement over D-RLS, demonstrating
its potential of reducing both communication and computation costs
in solving the distributed linear regression problem.
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