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ABSTRACT

In this paper we describe the 2016 BBN conversational telephone
speech keyword spotting system; the culmination of four years of
research and development under the IARPA Babel program. The
system was constructed in response to the NIST Open Keyword
Search (OpenKWS) evaluation of 2016. We present our technologi-
cal breakthroughs in building top-performing keyword spotting pro-
cessing systems for new languages, in the face of limited transcribed
speech, noisy conditions, and limited system build time of one week.

Index Terms— keyword spotting, under-resourced languages,
multilingual training, subword systems

1. INTRODUCTION

The IARPA Babel program recently completed its fourth and final
year. The principal objective of Babel was to develop a keyword
search (KWS) system that delivers high accuracy for any new lan-
guage, in the face of very limited transcribed speech, noisy acoustic
and channel conditions, and limited system build time of one week.

In this paper, we present a top-performing keyword spotting sys-
tem for conversational telephone speech that BBN constructed in re-
sponse to the NIST Open Keyword Search Evaluation (OpenKWS)
evaluation of 2016. The 2016 system was the culmination of 4 years
of research and development under the IARPA Babel program.

The system contains—beyond the technology introduced in the
first three years of the program—several, recently developed, novel
methods that significantly improve speech-to-text (STT) and KWS
performance. We incorporated data augmentation for improving the
speaker and environmental variability of the data. We assessed the
efficacy of various recently developed neural network (NN) models.
We developed various methods to improve the performance of NN
based acoustic models for low resource languages, including joint
alignment. We addressed multilingual NN training from imbalanced
data sources. We further improved our subword models by modi-
fying our automatic syllabification algorithm. The next sections de-

∗We would like to thank our BABELON team partners for their contri-
butions: Brno University of Technology helped to apply the WPE algorithm.
North-West University worked on the syllabification part. We would also like
to thank the members of the BBN Speech and Language group for useful dis-
cussions. This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense US Army Research
Laboratory contract number W911NF-12-C-0013. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.
†Now at Tallinn University of Technology, Estonia

scribe, to the extent possible, the components of our top-performing
keyword spotting system.

2. DATA

The data for the IARPA Babel program consists of conversational
telephone speech from 25 languages. Over the course of the pro-
gram, the amount of in-language data available for the target lan-
guage has varied between 3 and 80 hours of transcribed speech.
Speech is collected in real-life usage scenarios and includes mainly
conversational telephone speech, recorded under different condi-
tions, such as mobile phone conversation made on the street. Most
of the languages also contain a small amount of data collected using
a distant microphone. Each year a set of languages are given as de-
velopment languages for the purpose of research and testing, before
a surprise language is given for final evaluation. For the fourth and
final year, Georgian was selected as the surprise language.

We participated in the primary evaluation — full language pack
(FLP) — consisting of approximately 40 hours of transcribed speech
and 40 hours of untranscribed speech. Instead of a pronunciation
lexicon, IARPA provides a Language Specification Peculiarities
(LSP) document that details the common letter to IPA mappings.
While Georgian consists of many dialects, they were merged into
two groups (Eastern and Western) in the LSP. Given the broad classi-
fication of dialects provided for the training data, we did not explore
any dialect-specific approaches.

The primary evaluation metric for Babel is actual term-weighted
value (ATWV), though we also report WER results. ATWV is a
keyword spotting metric. A score is generated for each individual
keyword and then averaged together to obtain the final result. While
each keyword is treated equally, that is not true of each individual
detection; it is more important to recognizer any instance of a rare
keyword than of a common keyword. All false alarms are treated
equally. For more detailed information about the metric, see [1].

3. SPEECH RECOGNITION

We use BBN’s Sage STT platform [2] for building the system. Sage
integrates technologies from multiple sources, each of which has a
particular strength. In Sage, we combine proprietary sources, such
as BBN’s Byblos [3], with open source toolkits, such as Kaldi [4]
and CNTK [5]. Sage also includes a cross-toolkit FST recognizer
that supports models built using the various component technologies,
and software supporting keyword search from Byblos [6].

3.1. Pronunciation dictionary

The pronunciation dictionary was directly obtained from the letter-
to-phone mappings defined in the LSP.
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3.2. Multilingual bottleneck features

Language #Hours Release
Amharic 40 IARPA-babel307b-v1.0b
Assamese 80 IARPA-babel102b-v0.4
Bengali 80 IARPA-babel103b-v0.3
Cantonese 100 IARPA-babel101b-v0.4c
Cebuano 40 IARPA-babel301b-v2.0b
Dholuo 40 IARPA-babel403b-v1.0b
Guarani 40 IARPA-babel305b-v1.0a
Haitian 80 IARPA-babel201b-v0.2b
Igbo 40 IARPA-babel306b-v2.0c
Javanese 40 IARPA-babel402b-v1.0b
Kazakh 40 IARPA-babel302b-v1.0a
Kurdish 40 IARPA-babel205b-v1.0a
Lao 85 IARPA-babel203b-v3.1a
Lithuanian 40 IARPA-babel304b-v1.0b
Mongolian 40 IARPA-babel401b-v2.0b
Pashto 87 IARPA-babel104b-v0.4bY
Swahili 47 IARPA-babel202b-v1.0d
Tamil 50 IARPA-babel204b-v1.1b
Tagalog 86 IARPA-babel106b-v0.2g
Telugu 40 IARPA-babel303b-v1.0a
Tok Pisin 40 IARPA-babel207b-v1.0b
Turkish 88 IARPA-babel105b-v0.4
Vietnamese 85 IARPA-babel107b-v0.7
Levantine Arabic 180 LDC2006S29, LDC2006T07
English (random
subset of Fisher)

265 LDC2004S13, LDC2004T19,
LDC2005S13, LDC2005T19

Mandarin (HKUST,
CallHome,
CallFriend)

260 LDC2005S15, LDC2005T32,
LDC96S34, LDC96T16,
LDC96L15, LDC98S69,
LDC98T26, LDC96L15

Spanish (Fisher,
CallHome,
CallFriend)

235 LDC2010S01, LDC2010T04,
LDC96S35, LDC96T17,
LDC98S70, LDC98T27

Table 1. Languages used for multilingual training, together with the
training data sizes and release identificators.

Almost all acoustic models in our combined system use fMLLR-
transformed multilingual bottleneck (BN) features [7]. The feature
extractor is trained using 23 Babel languages and four non-Babel
languages (see Table 1). One the Babel languages (Zulu) was ex-
cluded from the multilingual pool to be used as a development lan-
guage for testing the porting of multilingual models. Total duration
of the training data is about 2300 hours. Training data is artificially
doubled using speed and noise augmentation [8]. We use 32 dimen-
sional filterbank features, combined with 3 Kaldi pitch features as
input to the BN model. The input features are stacked to accumulate
a temporal context of 11 frames. All hidden layers use the p-norm
non-linearity [9]. The BN network has three hidden layers before
and one after the BN layer. The BN p-norm layer has an input di-
mensionality of 800 and output dimensionality of 80. Other hidden
layers have 5000 input units and 500 output units. The output layer is
a block-softmax [7] with approximately 4500 context-dependent tar-
gets per language. The BN model was trained before the Georgian
training data became available which demonstrates the usefulness
of multilingual features for rapid porting to a new language. The

training data was scaled using language specific weights, in order to
equalize the contribution of each language [10]. The BN extractor
was ported to Georgian by first replacing the block-softmax with the
Georgian-specific softmax, training the softmax layer while keeping
the rest of the model fixed, and finally training the whole model,
using a 10 times smaller learning rate than the original [11].

The BN features are used for GMM-based speaker-adapted
training (SAT), and the fMLLR-transformed BN features are used
as input to the acoustic models.

Typically about 15% of the BABEL development and evalua-
tion data includes speech recorded using a distant microphone. We
dereverberated the microphone data with a weighted prediction error
(WPE) algorithm [12]. Based on our experience with BABEL devel-
opment languages, this can improve the WER of distant microphone
data by around 3% absolute.

3.3. Acoustic models

We explored a set of diverse acoustic models in our combined sys-
tem: a simple feed-forward DNN, LSTM and BLSTM models,
and finally time-delay neural network (TDNN) and BLSTM based
“chain” models. Those models are trained on multilingual features.
We also train a DNN, LSTM and BLSTM model using monolingual
BN features and a CNN using filterbank features. All models are
trained on one copy of clean and one additional copy of speed and
noise perturbed data. A PLP-based SAT GMM-HMM system was
first trained from flat start to obtain initial alignments for the DNN
and CNN models. LSTM, BLSTM and chain models were trained
using alignments generated with the DNN model.

DNN. For this model, we use a temporal context of 13 stacked
frames (−10, −5..5, 10), it has six 2048-dimensional hidden layers
with the sigmoid activation function, and the output layer has ap-
proximately 4500 tied-state targets. Unsupervised RBM-based pre-
training is used to initialize the weights of the hidden layers. This is
followed by four epochs of cross-entropy training and five epochs of
SMBR-based sequence discriminative training.

MultiDNN. The multilingual DNN acoustic model [10] is
trained on the same set of 27 languages as the multilingual BN
feature extractor. Similarly to the simple DNN, MultiDNN uses 13
stacked fMLLR-transformed features as input. The fMLLR trans-
forms are estimated independently for each language. The Mul-
tiDNN parameters are initialized using RBM-based unsupervised
pre-training over a subset of the multilingual data. The architecture
of MultiDNN is similar to the simple DNN, with one additional
dimension-reducing p-norm non-linearity with 3500 input units and
350 output units before the softmax layer. Since the block-softmax
layer of a multilingual DNN-AM is very large (around 130 000 in
our experiments), this additional p-norm layer greatly reduces the
number of parameters of the hidden-to-softmax layer and thus the
whole multilingual DNN-AM and makes DNN training much faster.
The strategy of porting the MultiDNN model to Georgian is similar
to porting of the BN feature extractor: first, we replace the block-
softmax output layer of the MultiDNN with a softmax for Georgian,
train it for two epochs, and finally train the whole DNN, using a
smaller learning rate. Finally, five epochs of SMBR-based sequence
discriminative training are performed.

LSTM and BLSTM acoustic models are based on the work
in [13], where each LSTM or BLSTM layer consists of peep-
hole connections and a recurrent projection layer. Our LSTM and
BLSTM models each consist of four hidden layers. The first two
layers are fully connected layers like a regular DNN and the last two
layers are LSTM/BLSTM layers. The fully connected layers have
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2048 sigmoid units and they are initialized with RBM. For the LSTM
model, the LSTM layer has 1024 memory cells and the recurrent
projection layer would project the output to 512 dimensions. For the
BLSTM model, each BLSTM layer has two directions: the forward
direction and the backward direction. Each direction is a regular
LSTM with 512 memory cells and 300 dimensional projected out-
put. The LSTM and BLSTM layers are initialized randomly except
for the bias of the forget gate, which is initialized as a vector of
ones according to [14]. The LSTM and BLSTM are first trained
with cross entropy training followed by SMBR training. The initial
alignment for cross entropy training comes from the DNN model.
However, once we train an initial LSTM and BLSTM, we realign
the training set with a joint model of DNN, LSTM and BLSTM
with equal weights similar to the work in [15]. The new alignment
is then used to retrain the BLSTM. During our initial investigation,
we found the LSTM and BLSTM generally perform well in terms
of WER. However, the LSTM based models tend to be too sharp
that the lattices generated from these models have suboptimal KWS
performance. To improve KWS performance, the objective func-
tions used in the cross entropy and SMBR training are multi-task
functions. The objective functions contain an extra term, which is
the cross entropy of the DNN output and the LSTM/BLSTM output.
The term is weighted by a scalar, 0.25, which is determined empiri-
cally. By doing so, the LSTM and BLSTM models could learn from
the DNN model to prevent the models being too sharp. We find that
this technique can improve both STT and KWS performance for
LSTM and BLSTM models. Based on the same idea, we improved
our linear least squares based adaptation (LLS) proposed in [16],
such that, instead of using a hypothesis for adaptation, we could
adapt to a NN output directly.

ChainTDNN and ChainBLSTM. We also train TDNN and
BLSTM based “chain” models that were recently implemented in
Kaldi [17]. Chain models use many techniques that make them
different from traditional DNNs and (B)LSTMs, suchs as CTC-like
lattice-free maximum mutual information (LF-MMI) criterion based
training without the need for frame-level cross-entropy pre-training,
the use of 3-fold reduced frame rate and a different HMM topology.
Therefore, the chain models provide diversification to our system
combination which is known to bring substantial benefits. The
TDNN-based chain model has six 450-dimensional hidden layers
with ReLU activation, and the splicing indices per layer are -1,0,1 0
-3,0,3 0 -3,0,3 0 -6,-3,0 0. We reduced the width of splicing slightly
compared to the Kaldi recipes since we use BN features that are
already based on spliced filterbank features. Cross-entropy regu-
larization, output l2 regularization and the leaky HMM method are
applied during training, similarly to the appropriate Kaldi recipes.
We found slight improvements (around 0.5 in WER) from us-
ing DNN-generated lattices as input to the training, as opposed
to GMM-generated lattices. Around 2000 left-biphone dependent
states are used as TDNN targets. The ChainTDNN model is trained
using four epochs of LF-MMI and five epochs of SMBR. The
BLSTM-based chain model has three BLSTM layers each with 650
units, and 160-dimensional recurrent and non-recurrent projections.
It is trained using only five epochs of LF-MMI.

CNN model was trained using filterbank features. The gen-
eral structure of the model is similar to the one described in [18]
— two convolutions layers followed by four fully connected layers.
The first convolutional layer uses 128 filters of size 9 in the filter-
bank dimension. Note that we only a one-dimensional convolution;
our tests using two-dimensional convolution did not improve perfor-
mance. The second layer doubles the filters to 256 and reduces the
filter size to 4. In between the two convolution layers there is also

Total
lexicon size

#Words from
web data

OOV WER ATWV

37k 0 8.7 40.7 0.700
87k 50k 5.0 38.0 0.726
137k 100k 3.9 37.5 0.731
187k 150k 3.3 37.1 0.734
237k 200k 2.9 36.8 0.735
537k 500k 1.8 36.6 0.739

Table 2. Comparision of development set OOV rates between train-
ing and web-enhanced lexicons with 50k to 500k new words added.

a 3x3 max pooling layer. We also use pitch features, but they do
not pass through the convolution layers. Instead they are fed to two
smaller fully connected layers in parallel. The output of the smaller
pitch network is concatenated with the output of the two convolution
layers before being passed to four fully connected layers with 2048
hidden nodes each.

3.4. Language Modeling

We improve the language model (LM) using web text documents
contributed by BBN and Columbia University under the Babel pro-
gram. The BBN part of the web text is obtained through an auto-
matic procedure that queries a search engine with query terms simi-
lar to those found in the training transcripts[19]. We use the Bing
Search API in our experiments, although the algorithm is search
engine agnostic. We post-process the downloaded web text using
the XenC tool[20], which selects high-confidence text based on the
cross-entropy between training data and the provided web text. Of
the 328 million words from the web text, 36 million words (11%)
are retained for language modeling after the filtering.

In addition, we increase the size of the decoding lexicon by
adding new words selected from the web text using frequency rank-
ing. This step, often called lexicon expansion, can substantially
reduce the out-of-vocabulary (OOV) rates. We observed big gains
from using the LM enhanced with web data. Table 2 lists the OOV
rates with WER and ATWV results, with increasingly large LM lex-
icons, when using a DNN with multilingual features as the AM. The
ATWV improvement from using web texts in the LM was between
2.6 and 3.9 points—one of the largest that we have seen across all
the BABEL languages.

In order to balance OOV rate reduction and runtime memory
requirements, we used the LM with 150k new words in most of our
final decoding runs. To provide more diversity, some decodings were
run with a 500k LM. The LMs were constructed by interpolating the
standard trigram LM estimated from the different training corpora,
using weights optimized on the development set. The resulting LMs
were pruned before converting to a FST and being used in decoding.

3.4.1. Subword-based models

In addition to whole words, we also ran decoding using subword
units. Subword units offer the benefit of diversity when combining
multiple acoustic models and tokenizations, as well as improved de-
tection for OOV keywords [21]. We used automatically-generated
syllable-like units [22] as subwords. Moreover, a variant of the syl-
labification algorithm was used this year [23]) with the goal of in-
creasing the diversity of the subword units as much as possible.
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The process of generating and using the subword units mostly
followed the one described in [21, 24]. Note that decoding involves
subword units was well as their compounded variants. E.g., if a word
is segmented into subwords A B C, the pseudo-words A, B, C, AB,
BC, ABC are added to the lexicon. The keyword spotting pipeline
follows the steps mentioned in the next section. Both IV and OOV
keywords are detected as sequences of subword units, using fuzzy
matching as an additional mode of search.

4. KEYWORD SEARCH

The keyword search pipeline contains the following steps:

1. Decoder lattices are converted into posterior lattices, where the
score of each arc is set to the posterior probability of following
a path that contains the arc.

2. Confusion networks [25], and time-quantized lattices [26] are
generated from the posterior lattices.

3. Phonetic confusion networks are generated from phone-transformed
posterior lattices, as described in [27].

4. Whole-unit search for IV keywords is performed on confusion
networks and time-quantized lattices from step 2 above.

5. Approximate match search for OOV keywords is performed on
confusion networks, time-quantized lattices and phonetic confu-
sion networks. Two methods are used for approximate match:
(i) fuzzy-phonetic search of [28] and proxy keywords [29]. As
mentioned in [26], these two methods are complementary and
give gains when combined.

6. A total of 5-6 hit lists are generated from each one of the above
techniques. These hit lists are subsequently normalized based on
the linear fit method [30].

7. The normalized hit lists are then merged together (each one of
the resulting hits is assigned a vector of scores from the individ-
ual search methods) and then a single score is computed through
a linear combination of the scores (this is done separately for
IV and OOV keywords, as the strength of each search technique
depends on the keyword type). The weights are trained using
Powell’s method [31].

8. The scores of the two resulting hit lists (IV, OOV) are trans-
formed using the “probability of correct”, so that they resemble
posteriors [31].

9. A decision threshold is chosen for each hit list based on the Dev
set. Finally, the two hit lists (IV, OOV) are merged together and
a single threshold is computed using the “exponential normal-
ization” formula of [31].

5. RESULTS

Table 3 presents the speech-to-text (STT) and KWS results of the in-
dividual systems on development data. In order to reduce the number
of final systems and to increase the quality of the single decoding
runs, several systems actually perform joint decoding using multi-
ple acoustic models. Three of the systems use pseudo-syllables as
LM units. We didn’t convert the STT output of the syllable-based
systems to word-based output, as during the development phase we
found that these were not competitive with the outputs of the word-
based systems. However, it can be seen that the best KWS results
were actually obtained from the pseudo-syllable based systems.

Tables 4 and 5 present system combination results on devel-
opment and evaluation data in terms of STT and KWS perfor-
mance. STT results were obtained by running ROVER [32] on the
1-best outputs of the word-based decoding runs. KWS results were

Features Model(s) WER ATWV
Words as LM units

Multi BLSTM 35.9 0.731
Multi ChainTDNN 36.1 0.749
Multi ChainBLSTM 35.1 0.743
Mono DNN+CNN+LSTM+BLSTM 36.4 0.732
Multi DNN+MultiDNN+LSTM+BLSTM 34.4 0.754

Pseudo-syllables as LM units
Multi BLSTM 0.736
Mono DNN+CNN+LSTM+BLSTM 0.730
Multi DNN+MultiDNN+BLSTM+LSTM 0.759

Table 3. WER and ATWV results of the individual decoding runs
on dev data, including joint decodings with multiple models.

Systems Dev Eval
Multi/DNN+MultiDNN+LSTM+BLSTM 34.4 32.1
+ Multi/ChainBLSTM 33.2 29.2
+ Mono/DNN+CNN+LSTM+BLSTM 32.8 28.8
+ Multi/BLSTM 32.4 28.4
+ Multi/ChainTDNN 32.2 28.2

Table 4. WER results on development and evaluation data, using a
ROVER combination from an increasing number of systems.

combined using the hitlist combination technique [33]. The order
of adding individual systems to the combination was determined
heuristically, by selecting models with good performance while also
trying to maximize the diversity of acoustic and language models.
It is perhaps surprising that the absolute improvement from system
combination on evaluation data is larger for WER (3.9%) than for
ATWV (1.8%).

6. CONCLUSION

This paper described the BBN conversational telephone speech
KWS system for Georgian, built under the IARPA BABEL program
for the 2016 NIST OpenKWS evaluation. Our system combines
monolingual and multilingual acoustic features, various neural net-
work based acoustic models with word and pseudo-syllable based
language models. The combined system achieved a KWS perfor-
mance of 0.873 in ATWV and a WER of 28.2%.

Systems Dev Eval
Multi/DNN+MultiDNN+BLSTM+LSTM/syll 0.759 0.855
+ Multi/ChainTDNN 0.770 0.865
+ Multi/DNN+MultiDNN+LSTM+BLSTM 0.771 0.867
+ Mono/DNN+CNN+LSTM+BLSTM 0.775 0.868
+ Multi/BLSTM/syll 0.778 0.871
+ Multi/ChainBLSTM 0.783 0.872
+ Mono/DNN+CNN+LSTM+BLSTM/syll 0.784 0.873
+ Multi/BLSTM 0.784 0.873

Table 5. ATWV results on development and evaluation data, using
a combination of hitlists from an increasing number of systems.
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