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ABSTRACT

This paper investigates the application of unsupervised acoustic unit
discovery for topic identification (topic ID) of spoken audio doc-
uments. The acoustic unit discovery method is based on a non-
parametric Bayesian phone-loop model that segments a speech utter-
ance into phone-like categories. The discovered phone-like (acous-
tic) units are further fed into the conventional topic ID framework.
Using multilingual bottleneck features for the acoustic unit discov-
ery, we show that the proposed method outperforms other systems
that are based on cross-lingual phoneme recognizer.
Index Terms: topic identification, acoustic unit discovery, unsuper-
vised learning, non-parametric Bayesian models

1. INTRODUCTION

Recent advances in machine learning and spoken language technolo-
gies have given rise to many daily life applications. This progress is
mainly coming from the so called “deep learning” methods, that re-
quire large amounts of labelled data for training. Unfortunately, for
many languages the lack of labelled data precludes the direct appli-
cation of state-of-art spoken language technologies.

The need for automatic analysis of spoken documents is impor-
tant, since the amount and the ability to store multimedia data is
increasing day-by-day. The technologies developed in this regard
are primarily useful for tasks such as query based document re-
trieval, topic identification (topic ID), key-word spotting, etc. Most
of these information retrieval tasks rely on the semantics in a doc-
ument, where the notion of topics play an important role. One par-
ticular task of interest is topic ID, where the goal of a system is to
identify the topics of the spoken documents in a given collection.
This can also be seen as a supervised task, where, a given document
has to be classified into one of the pre-defined topics.

A majority of the systems for topic ID of spoken documents use
word or phoneme based automatic speech recognition (ASR) as the
pre-processing step, followed by the application of techniques devel-
oped by the text retrieval community [1, 2, 3]. It is possible to train
ASR systems for English on large amounts (1000 hours) of publicly
available data [4] and software [5]. But, not every language is rich in
resources for building ASR systems, hence there is a need for devel-
oping techniques that are useful for languages with low or zero re-
sources. Earlier works on the analysis of spoken documents in zero
resource scenarios were based on identifying recurrent patterns of
speech (spoken words), where dynamic time warping (DTW) based
algorithms were used [6, 7]. However, these are not scalable to large
amounts of data. An alternative is to use phone recognizers from

other languages. This idea was explored for the task of topic ID in
[8]. Under limited resource conditions, i. e., with limited vocabulary
for training an ASR, topic ID of spoken documents was explored in
[9]. In this paper, we propose a topic ID system that relies on the
unsupervised discovery of acoustic (phone-like) units using a non-
parametric Bayesian model.

We have recently proposed an infinite phone-loop model [10],
similar to [11], to automatically segment unlabelled speech into
phone-like categories. By using variational Bayes rather than Gibbs
sampling, we have shown that this model can be trained efficiently
on large speech corpora with greater accuracy [10]. We use this
model as a front-end to a topic ID system. A similar idea was pro-
posed in [12, 13], where the authors used “self-organizing-units” to
represent speech into meaningful tokens. In our work, we jointly
learn the speech segmentation and the parameters of the acoustic
model in a completely unsupervised fashion, whereas the earlier ap-
proaches [12, 11], learn the segmentation independent of the acous-
tic model. In [12], the acoustic model is learnt together with the
language model, whereas we limit ourselves to model the acoustic
data.

The infinite phone-loop model is described in Section 2, and our
topic ID framework is explained in Section 3. Section 4 includes the
details of the data set, description of the baseline and the proposed
systems. We provide the results of topic ID systems in Section 5,
followed by conclusions in Section 6.

2. THE INFINITE PHONE-LOOP MODEL

2.1. Model

The model aims at segmenting and clustering unlabelled speech data
into phone-like categories. It is similar to a phone-loop model in
which each phone-like unit is modelled by an HMM, and each HMM
state distribution is represented by a GMM. This phone-loop model
is fully Bayesian in the sense that:

• it incorporates prior distributions over HMM state transition
probabilities, and parameters of state emission GMM distri-
butions,

• it has a prior distribution over the units modelled by a Dirich-
let process [14].

Informally, the Dirichlet process prior can be seen as a standard
Dirichlet distribution prior for a Bayesian mixture with an infinite
number of components. However, we assume that our N data sam-
ples have been generated with only M components (M ≤ N ) from
the infinite mixture. Hence, the model is no longer restricted to have
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a fixed number of components but instead can learn its complexity (i.
e. number of components used, M ) according to the training data.
The generation of a data set withM speech units can be summarized
as follows:

1. sample the vector v = v1, ..., vM with

vi ∼ Beta(1, γ) (1)

where γ is the concentration parameter of the Dirichlet pro-
cess

2. sample parameters of M HMMs, θ1,...,θM from the prior
(base) distribution of the Dirichlet process.

3. sample each segment as follows:

(a) choose a HMM parameters with probability πi(v) (us-
ing stick breaking process [15]) defined as:

πi(v) = vi

i−1∏
j=1

(1− vj) (2)

(b) sample a path s = s1, ..., sn from the HMM transition
probability distribution

(c) for each si in s:

i. choose a Gaussian components from the mixture
model

ii. sample a data point from the Gaussian density
function

2.2. Model parameters

In the absence of information about the prior distribution of the pa-
rameters of the model, it is convenient to use conjugate prior (dis-
tribution), which greatly simplifies the inversion of the model: in-
deed, due to the conjugacy, the posterior distribution of each param-
eter of the model will have the same parametric form of the prior.
The distribution of the mean µ and the diagonal covariance ma-
trix Σ with diagonal λ is modelled by a Normal-Gamma density:
N (µ|µ0, (κ0λ)−1) Gamma(λ|α0,β0) where β0 is the rate pa-
rameter of the Gamma distribution. The prior of the weights π of a
GMM and the row r of the transition matrix of an HMM are mod-
elled by Dirichlet distributions parametrized by the vectors η(gmm)

0

and η
(hmm,r)
0 respectively. Finally, the prior distribution over the

proportions vi is the Beta(1, γ) distribution. The model also has 3
set of hidden variables:

• c, where ci the index of the HMM for the ith segment in the
data set

• S, where sij the HMM state of the j th frame in the ith segment

• M, where mij the GMM component of the j th frame in the
ith segment.

2.3. Inference

We would like to invert the model previously defined to obtain the
probability of the parameters, and the hidden variables which de-
fine the segmentation, given the data. Following variational Bayes
(VB) framework, it can be achieved by optimizing a lower-bound on
the log-evidence of the data with respect to the distribution over the
parameters q:

log p(X) ≥Eq[log p(X, c,S,M,Θ|Φ0))]

− Eq[log q(c,S,M,Θ)]
(3)

where X is the entire set of features of the N segments, c =
c1, ..., cN , S = s11, ..., sNLN , M = m11, ...,mNLN , Θ is the
set of all the parameters and Φ0 is the set of the hyper-parameters of
the prior distribution over the parameters. The equality is achieved
if and only if q(c,S,M,Θ) = p(c,S,M,Θ | X). Because of
the conjugate prior distribution described in Section 2.2, we have a
closed form solution [15] for a coordinate ascent algorithm, when
considering the mean-field approximation:

q(c,S,M,Θ) = q(c,S,M)q(Θ), (4)

where we have assumed the statistical independence between the pa-
rameters and the hidden variables of the model. Following [15],
another approximation is done to cope with the infinite number of
components in the mixture; we set vT = 1 to force the weight of
any component greater than T to zero. By using the factorization in
(4) and variational calculus, one can show that the (log) distributions
that maximizes the bound (3) are:

log q∗(c,S,M) = Eq(Θ)[log p(X, c,S,M,Θ|Φ0)] + const

log q∗(Θ) = Eq(c,S,M)[log p(X, c,S,M,Θ|Φ0)] + const
(5)

Maximizing the bound (3) minimizes the KL divergence between (4)
and the true posterior distribution of model parameters. Therefore
(4) can be taken as the approximate posterior, which is found by
evaluating each factor in turn using (5) until convergence. Details
about the update equations can be found in [10].

The mixture of HMMs can be interpreted as a single compound
HMM, which allows us to easily evaluate the approximate poste-
rior distribution q(c,S,M) using the standard forward-backward
(Baum-Welch) algorithm. Similarly, Viterbi algorithm can be used
for decoding the sequences of the discovered acoustic units. This
subtlety simplifies the inference algorithm as we do not need any
pre-segmentation of the speech data.

3. TOPIC ID FRAMEWORK

3.1. Topic ID in low resource scenarios

Let D be the collection of documents comprising a vocabulary V ,
and let each document belong to one and only one topic from a set
of T topics. Let d, w and t be the variables for denoting documents,
tokens in the vocabulary and topics respectively. Assuming the bag-
of-words approach, each spoken document d is represented in the
form of a vector, whose dimension is equal to the size of the vocab-
ulary V . In the conventional topic ID framework, the vocabulary V
is simply the set of words as seen in the document collection. In low
resource scenarios, when a reliable word based ASR is not avail-
able, the vocabulary could be made from phoneme n-grams (usually
n = 3, 4). It was observed that the topic ID based on phoneme tri-
grams is a robust alternative to a word based topic ID system [2].
Since the infinite phone-loop model discovers phone-like units, we
experimented with 3-grams and 4-grams as the terms (word-types)
in the vocabulary.

3.2. Vocabulary selection

In a supervised setting, vocabulary selection plays an important role
as it can drastically reduce the dimension of the document vectors
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and significantly improve the performance of the classifier. The n-
grams for vocabulary are chosen based on conditional probabilities
as used in [2]. The conditional probability of topic t given a n-gram
w is estimated as follows:

P (t | w) =
fwt + |T |P (t)

fw + |T | , (6)

where fwt is the number of times the n-gram w appeared in docu-
ments related to topic t, fw is the total number of times n-gram w
appeared in all the documents from the training set. P (t) is the prob-
ability of topic t as estimated from training corpus. The conditional
probability in (6) is computed for every topic and the vocabulary is
formed by considering top Nt n-grams per topic with the highest
probabilities (6).

3.3. Document representation

If fwd represents the frequency of token w in document d, then the
smoothed TF-IDF (term frequency - inverse document frequency)
representation (vwd) is given by,

vwd = fwd . log
( |D|

1 +Ndw

)
+ 1, (7)

whereNdw represents the number of documents in which the termw
appears. The resulting document vectors are further `2 normalized,
such that the sum of the squares of elements equals to 1.

3.4. Document classification

For classifying the documents, we have used linear support vector
machines, trained using stochastic gradient descent [16, 17]. The
SVMs are used in a one-versus-all strategy for multi-class classifica-
tion. On the training data, we used 5-fold cross validation and per-
formed grid search over the choice of hyper-parameters (i. e., choice
of `1, `2, elastic net regularization and the regularization coefficient)
of the classifier. Using the best of hyper-parameters, the classifier is
trained again using all the training data to predict the topic labels of
the test documents.

4. EXPERIMENTAL SETUP

4.1. Data set

Our experiments on topic ID are conducted on the Fisher phase 1
English corpus, which is a collection of recordings from conversa-
tional telephone speech. Each document represents one telephone
conversation that includes both sides of the call, and is associated
to one and only one topic. We chose a subset that consists of the
same 6 topics as in [7], but relatively more number of documents per
topic. The details of this subset of data used in our experiments is
given in Table 1. This subset was chosen to study the acoustic unit
discovery (AUD) model. We have also experimented on a larger set
of 40 topics with the same data splits as used in [2, 3, 8].

4.2. Oracle system

The oracle system is based on the English phoneme recognizer
trained on Fisher corpus with large amounts (∼ 500 hrs.) of data.
The motivation for using such a setup is to show the performance of
a topic ID system in scenarios where the target language is known
and considerably large amounts of training data is also available. We
used DNN based phoneme recognizer built with the Kaldi toolkit
following the recipe described in [18].

Table 1. The statistics show number of recordings per topic from a
subset of Fisher corpus used in the preliminary experiments.

Topic Name # docs.

Training set Test set

Anonymous Benefactor 20 56
Corporate Conduct in the US 20 38
Education 20 57
Holidays 20 58
Illness 20 71
Minimum Wage 20 144

Total duration (hrs). 21.67 77.28

4.3. Baseline systems

The baseline systems are based on phoneme recognizers from vari-
ous languages: Czech, Hungarian, Russian, which were trained with
split temporal context features [19]; and Turkish, from the Babel pro-
gram, which was trained in a similar framework as described in [20].
The Hungarian phone recognizer was used as a baseline comparison
for the task of topic ID in [2, 8, 12, 13].

4.4. Proposed system

The proposed system is based on the discovered acoustic units from
the infinite phone-loop model. We explored the following set of in-
put speech features for training the model:

1. 13 dimensional MFCCs + ∆ + ∆∆

2. Multilingual bottleneck features (Babel-MBN) [21].

3. Multilingual bottleneck features (global phone dataset, GP-
MBN) [22].

The Babel-MBN features are extracted using bottleneck neural net-
work trained on data comprising of Cantonese, Pashto, Tagalog,
Turkish and Vietnamese and GP-MBN are trained on data compris-
ing of Czech, German, Portuguese, Russian, Spanish, Turkish and
Vietnamese languages. Both the neural networks are trained in the
same fashion as described in [21].

The hyper-parameters of the infinite phone-loop model play a
significant role in quality and quantity of the discovered acoustic
units. We primarily experimented with the concentration (γ) of the
Dirichlet process prior and the truncation (M ). The effect of these
hyper-parameters is explained in the following section along with
the results. The rest of the hyper-parameters i. e., states per HMM
(S = 3) and Gaussian components per state (C = 2) are fixed. We
also investigate the importance on the amount of data used to train
the infinite phone-loop models.

5. RESULTS

In the first section of the results, we give the comparison of topic ID
systems across various baselines and AUD systems. All the systems
are based on 1-best sequence from the recognizers. These experi-
ments are performed on a subset of 6 topics from the corpus as de-
tailed in Table 1. In the later section, we show the topic ID results
on a larger set of 40 topics from the same corpus.

5.1. Topic ID on the subset

The AUD model was trained on the 21 hr. training set as presented in
Table 1, and the trained model was used to automatically transcribe
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Table 2. Comparison of Topic ID accuracy (in %) on the subset of 6
topics across various systems for the best set of 3-gram vocabulary.

Recognizer Acc. (%) Vocabulary size (|V |)

Hungarian (HU) 70.19 2428
Czech (CZ) 67.36 5856
Russian (RU) 60.90 3027
Turkish (TU) 55.04 12041
Proposed (AUD) 76.48 3029
Oracle (EN) 98.96 9516

both the training and test data in terms of the discovered acoustic
units. The resulting automatic transcription was fed into the topic ID
framework that was described in Section 3. Here, both the AUD and
topic ID models are trained on the same 21 hr. training set (Table 1).

The classification accuracy (in %) of the topic ID systems based
on various phoneme recognizers (baseline and oracle) and the dis-
covered acoustic units (AUD) are presented in Table 2. The infinite
phone-loop model outperforms all other phone recognizers except
for the one trained on the English (target language). This shows
that systems trained on another phone set than the target one are far
from being optimal, and it is preferable to use unsupervised meth-
ods instead. The vocabulary size (set of all unique trigrams) of the
proposed system is however much bigger than baseline systems, as
the number of discovered acoustic units is 100 (which is larger than
the number phoneme set of the other phone recognizers). In Table
2, the results are reported only for the vocabulary size for which the
classification accuracy is observed to be highest.

5.1.1. Topic ID across various AUD systems

This section presents the comparison of several AUD systems that
were explained in Section 4.4. We primarily experimented with var-
ious types of input speech features and concentration (γ) parameter
of the Dirichlet process. Higher concentration (γ > 1) encourages
more number of clusters (i. e., in the stick-breaking process, higher
concentration results in more number of smaller chunks of the stick).
From Table 3, we can observe that multilingual bottleneck features
are a better representation of speech for unsupervised learning of
acoustic units, and therefore results in better topic ID accuracy.

Table 3. Comparison of Topic ID accuracy (in %) on the subset of 6
topics across various AUD systems.

Feature type Accuracy
γ = 1.0 γ = 10.0

MFCC 36.33 39.27
Babel-MBN 63.41 75.47
GP-MBN 72.74 76.48

5.2. Topic ID on the large set

The details of the topic ID training and test splits on a large set of
40 topics from Fisher corpus are presented in Table 4. These are
the same splits as used in [2, 3, 8]. For these experiments, we have
trained two AUD models, one with 26 hrs. (AUD-26) and the other
with 52 hrs. (AUD-52), and neither of them overlap with any of the
topic ID training or test data from Table 4. These two AUD models
are trained with concentration, γ = 10 and GP-MBN input speech
feature representation, as this combination was observed to be giving

Table 4. Statistics of the data splits from large set of Fisher phase 1
corpus used in the experiments.

Set # docs. Duration (hrs.) # topics

Topic ID training 1374 244 40
Topic ID test 1372 226 40

the best topic ID performance earlier (Table 3). After the AUD mod-
els are trained, they are used to transcribe the topic ID training and
test data (Table 4) in terms of the discovered acoustic units, followed
by the topic ID framework described earlier in Section 3.

We chose the best baseline system (i. e., Hungarian, HU) from
Table 2 and perform the topic ID experiments on this large set of
40 topics in the same framework. All these results are presented
in Table 5, and we can observe that the proposed AUD systems are
better than the baseline, but still far from the oracle system (DNN
based English phoneme recognizer). This is partly because we have
a more difficult task of classifying 40 topics.

Table 5. Comparison of Topic ID accuracy (in %) on the large set
of 40 topics for the best set of n-grams from the vocabulary.

Recognizer Acc. (%) |V | n-gram AUD params.

AUD-26 53.84 6061 3 M = 200, γ = 10
AUD-52 55.54 2140 4 M = 100, γ = 10
HU 47.92 25351 3 -
EN 91.41 11236 3 -

From these experiments, we observe that in an unknown sce-
nario and/or language, it is better to borrow knowledge from the
other languages at a lower (feature) level (multi-lingual bottleneck
features) than at a much higher level (phone recognizer) and rely on
the unsupervised (data driven) methods to discover the acoustic units
from the data and use them for further tasks.

6. CONCLUSIONS

This work focuses on the importance and application of unsuper-
vised acoustic unit discovery for the task of topic identification. We
showed that using multilingual bottleneck features for learning the
acoustic units, the performance of the topic ID system could be im-
proved significantly. Our experiments on a corpus of conversational
telephone speech showed that the proposed system performs better
than the other systems which rely on the cross-lingual phoneme rec-
ognizers. Although the results are encouraging, there is still a signif-
icant space for improvement to reach the performance of supervised
speech recognition systems. One step towards achieving this would
be to jointly learn the language model and the infinite phone-loop
parameters in an unsupervised fashion.
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[21] František Grézl and Martin Karafiát, “Adapting Multilingual
Neural Network Hierarchy to a New Language,” in Proceed-
ings of the 4th International Workshop on Spoken Language
Technologies for Under- resourced Languages SLTU, 2014, pp.
39–45.

[22] Tanja Schultz, “Globalphone: a multilingual speech and
text database developed at Karlsruhe university,” in 7th In-
ternational Conference on Spoken Language Processing, IC-
SLP2002 - INTERSPEECH, September 2002.

5749


