
EXPLOITING DIFFERENT WORD CLUSTERINGS FOR CLASS-BASED RNN LANGUAGE
MODELING IN SPEECH RECOGNITION

Minguang Song1, Yunxin Zhao1, Shaojun Wang2

1Department of Computer Science, University of Missouri, Columbia, MO, USA
2Department of Computer Science and Engineering, Wright State University, Dayton OH, USA

msong@mail.missouri.edu, zhaoy@missouri.edu, swang.usa@gmail.com

ABSTRACT

We propose to exploit the potential of multiple word clusterings
in class-based recurrent neural network (RNN) language models for
ensemble RNN language modeling. By varying the clustering crite-
ria and the space of word embedding, different word clusterings are
obtained to define different word/class factorizations. For each such
word/class factorization, several base RNNLMs are learned, and the
word prediction probabilities of the base RNNLMs are then com-
bined to form an ensemble prediction. We use a greedy backward
model selection procedure to select a subset of models and combine
these models for word prediction. The proposed ensemble language
modeling method has been evaluated on Penn Treebank test set as
well as Wall Street Journal (WSJ) Eval 92 and 93 test sets, where
it improved test set perplexity and word error rate over the state-of-
the-art single RNNLMs as well as multiple RNNLMs produced by
varying RNN learning conditions.

Index Terms— recurrent neural network, language modeling,
model combination, speech recognition

1. INTRODUCTION

Language modeling plays an essential role in spoken and natural
language processing. With the advances in deep learning, neural
network language models (NNLM) [1][2] have gained popularity.
Among the NNLMs, Recurrent Neural Network Language Model
(RNNLM) [3][4] is becoming widely adopted in recent years, which
greatly outperforms traditional n-gram and some more complex
language models [5][6]. RNNLM has been successfully applied
in different language processing tasks such as speech recognition
[3][4][7][8], spoken language understanding [9][10], machine trans-
lation, and information extraction [11]. Nowadays efforts are being
made to improve RNNLMs [12].

An RNNLM can efficiently represent more complex linguistic
patterns than shallow neural networks [3]. An RNNLM is character-
ized by employing long word histories through a recurrent hidden-
to-input connection, using word embedding features, and producing
smooth word prediction probabilities. To reduce structural and com-
putational complexities for large vocabulary modeling, class-based
language modeling is commonly used in RNN in a similar way as in
structured output layer NNLM [13], where the output layer is fac-
torized to two parts: nodes for probabilities of word classes, and
nodes for probabilities of words conditioned on the classes. To clus-
ter words into classes, the methods of frequency binning [4] and
Brown clustering [14][15] are often used, with the objective of de-
livering high-quality single RNNLMs. While class-based language
modeling helps reduce complexity, the potential of varying the class

structures for ensemble language modeling has not been well ex-
plored for RNNLM.

In the current work, we propose to exploit the benefit that mul-
tiple word clusterings may offer in class-based language models for
ensemble RNN language modeling. By varying the clustering crite-
ria or the space of word embedding, different word clusterings can be
obtained to define different word/class factorizations. For each such
word/class factorization, a base RNNLM is learned, and the word
prediction probabilities of the multiple base RNNLMs are then com-
bined to form an ensemble prediction. The ensemble RNNLM will
be more accurate and robust than those of the individual RNNLMs
if enough diversity exists among the base LMs. This proposed ap-
proach is inspired by our previous work [16][17][18][19] in ensem-
ble speech acoustic modeling, where random-forests of phonetic de-
cision trees were used to define multiple triphone-state clustering
structures, and the likelihood scores of an observation vector is com-
bined over the multiple state-tying structures in speech decoding
search. Significant word error reductions were obtained using this
approach in both Gaussian-mixture-density Hidden Markov Model
(HMM) and deep-neural-network-HMM based speech recognition
experiments. It is worth noting that although combining multiple
RNNLMs were previously reported in [20], the different RNNLMs
in [20] were generated by varying the RNN learning initialization
conditions. Other efforts focused on combining different types of
language models, such as combining n-gram LM with structural LM
[5] and RNNLM [3][4][20].

In this work, we investigate using several clustering methods
to define word classes, including word frequency binning, part-of-
speech (POS) tagging, Brown clustering, as well as using k-means
clustering on word embedding vectors that are derived from differ-
ent language processing tasks. For combining multiple RNNLMs,
we investigate a backward model selection method to remove redun-
dant models in a greedy fashion while keeping the good models for
combination. We evaluate the proposed language modeling method
on the test set of the Penn Treebank and two test sets of the 20k-
word WSJ tasks, reporting performance on test set perplexity (PPL)
and word error rate (WER). Additionally, we measure diversity be-
tween different pairs of language models by comparing word par-
tition structures induced by different clustering methods and report
our finding.

The rest of this paper is organized as follows. Section 2 briefly
reviews RNNLM. The clustering strategies used in the current work
and the method of model combination are described in Section 3.
Experimental results are provided and analyzed in Section 4. A con-
clusion is made in Section 5.
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2. RECURRENT NEURAL NETWORK LM

The structure of a class-based RNN is illustrated in Fig. 1. The RNN
has an input layer x, a hidden layer s (also called context layer),
and an output layer y. At time t, the input to the RNN is x(t), the
output is y(t) and c(t), and the state of the hidden layer is s(t). The
input vector x(t) is formed by concatenating the one-hot vector of
the current word w(t) and the previous state s(t − 1). In [4], the
output layer is factorized to two parts: c(t) for the word classes, and
y(t) for words conditioned on the classes, where words are assigned
to classes according to their frequency proportions. The probability
of a word wi is approximated as a product of the probability of the
class to which wi belongs and the class conditional probability of
wi.

Fig. 1: Class-based RNN
The RNN computations are defined by the following equations:

sj(t) = f(
∑
i

wi(t)uji +
∑
k

sk(t− 1)rjk) (1)

cl(t) = g(
∑
j

sj(t)wlj) (2)

yc(t) = g(
∑
j

sj(t)vcj) (3)

P (wi|s(t)) =
∑
j

P (cj |s(t))P (wi|cj , s(t))

≈ P (cj∗ |s(t))P (wi|cj∗ , s(t))
(4)

where in the 2nd line of (4) it is assumed that a word (wi) belongs
to only one class (cj∗ ), and f(z) and g(z) are the sigmoid and the
softmax functions, respectively:

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk
(5)

The RNNLM is trained with the algorithm of truncated backpropa-
gation through time (BPTT). The network thus learns to remember
information for several time steps in the hidden layer.

3. WORD CLUSTERING AND MODEL COMBINATION

3.1. Clustering Methods

We investigate the following strategies for word/class factorizations:
• Frequency binning [4]: In this method, words are first sorted

by their unigram frequencies. They are next assigned to bins
sequentially to give the individual bins relatively even sums
of word frequency.

• Brown clustering [14][21]: This method is formulated for
statistical n-gram models and it delivers a binary-tree struc-
tured hierarchical clustering of words based on the contexts
in which they occur, where each internal node of the tree de-
fines a word cluster in that subtree.

• Part-of-speech (POS) tagging: We develop this method to in-
corporate coarse syntax information into word/class factor-
ization. First, the Stanford parser [22] is used to label train-
ing words by their tags which define the initial word clusters,

where a word with two or more tags is assigned to its most
frequent one. Next, the clusters larger than a predefined size
are randomly broken into smaller ones so as to generate a
specified number of word classes.

• K-means clustering on Continuous Bag-of-Words (CBOW)
word embedding: The CBOW model [23] predicts a word
according to its context. First we learn the CBOW word em-
bedding vectors with a dimensionality of 50. Then k-means
clustering is performed on the learned vectors to obtain the
word classes.

• K-means clustering on Continuous Skip Gram (CSG) word
embedding: The CSG model [23] is similar to CBOW model,
but it reverses the input and output of CBOW and predicts
the context according to word. Again, k-means clustering is
performed on the learned vectors to get the word classes.

3.2. Model Combination through Model Selection

We adapt a backward feature selection method for our task of model
selection. The selection is carried out on a validation dataset D using
the criterion of word error rate minimization. First, all K models,
M1,M2, ...,MK , are included in the model set S(K), and these
models are uniformly combined, yielding a WER of E(K) on D.
Next, each model is tentatively removed from the model set, and the
remaining models are again combined to evaluate the WER on D.
The model whose tentative removal yielding the lowest WER is then
formally removed, and the reduced model set becomes S(K − 1)
with the WER of E(K − 1). The procedure iterates so that one
model is removed at a time until there is no further improvement on
WER or only one model is left. The overall procedure for the model
selection method consists of the following four steps:

(1) Initialization: Take S(K) = {M1,M2, ...,MK} and com-
pute E(K) on D by using S(K). Set k = K.

(2) For i = 1 to k, form Si(k − 1) = S(k) −Mi and compute
Ei(k − 1) on D by using Si(k − 1).

(3) Find i∗ and set E(k − 1) = Ei∗(k − 1), where
i∗ = argmin

i
Ei(k − 1)

(4) If E(k−1) >= E(k) or k = 2, stop. Otherwise S(k−1) =
S(k)−Mi∗ , k := k − 1, and go back to Step (2).

Note that E(k) can be any relevant measure of model quality, in-
cluding PPL.

4. EXPERIMENT RESULTS
4.1. Experimental Setup

The RNNLM toolkit [24] was used to train the RNNLMs on Penn
Treebank and Wall Street Journal (WSJ) data sets. The vocabulary
sizes were 10k and 20k for the two corpora, respectively. In our ex-
periment, the size of the hidden layer was fixed to 200 for all models,
and the number of classes was kept around 100 for all word clus-
tering methods. For each type of word clustering, five RNNLMs
were trained with random weight initializations. For comparison,
the RNNLMs with the same word clustering but different weight
initializations were also combined, similar with the work of [20] on
combining frequency binning based class LMs. In the WSJ speech
recognition task, the Kaldi toolkit [25] was adopted to generate the
word lattices and n-best sentence hypotheses. A trigram language
model was trained with the SRILM toolkit for each dataset [26].

4.2. Penn Treebank Results
Penn Treebank corpus is one of the most widely used data sets for
language modeling evaluation. It includes 929k training words, 73k
validation words, and 82k test words. The vocabulary size is 10k.
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As discussed in Section 3.1, we considered 5 different word
clustering methods to train 5 types of class-based RNNLMs, and for
each clustering method we used 5 different random weight initializa-
tions to obtain 5 RNNLMs. We first provide in Table 1 the average
and standard deviation of PPLs for each class RNNLM as well as the
trigram LM. It is seen that the average PPLs of the RNNLMs varied
from 128.3 to 135.8, which amounted to 11.2% to 16.1% reductions
relative to the PPL of the trigram LM.

Mean PPL STD
Trigram LM 153.0
Frequency RNNLM 135.8 0.39
Brown RNNLM 128.3 1.52
CBOW RNNLM 129.7 1.10
CSG RNNLM 130.5 0.39
Tag RNNLM 130.9 0.61
All RNNLMs 131.0 2.65

Table 1: Penn Treebank test set PPLs by individual LMs

We next linearly combined the five RNNLMs of different weight
initializations in each word clustering by averaging the output word
probabilities of the RNNLMs:

P (w) =
1

N

N∑
j=1

Pj(w) (6)

where Pj(w) is the word probability from the jth LM. The PPL
results of the combined models are given in Table 2. We further con-
sidered combining five RNNLMs with different types of word clus-
tering. Specifically, we randomly chose five RNNLMs, one from
each class LM, to form a combined LM, and repeated the procedure
8 times to generate 8 combined LMs. The mean on the PPLs of
the 8 combined LMs is given in the last row in Table 2. It is seen
that all model combinations reduced test set perplexity, but com-
bining RNNLMs of different clusterings outperformed combining
RNNLMs of the same clustering. Relative to the mean PPL of the
individual RNNLMs in Table 1, the combined LM of different clus-
terings reduced PPL by 17.5% to 21.6%, and relative to the mean
PPL of the combined LMs with the same word clustering, it reduced
PPL by 5.2%. These results suggest the effectiveness of our strategy
of combining different class LMs.

PPL
5 Frequency RNNLMs 115.8
5 Brown RNNLMs 111.0
5 CBOW RNNLMs 108.9
5 CSG RNNLMs 110.9
5 Tag RNNLMs 111.4
5 different clustering RNNLMs 105.8

Table 2: Penn Treebank test set PPLs by combined RNNLMs

4.3. WSJ results
The standard 40M word Wall Street Journal (WSJ) training data set
was used to train our RNNLMs. The RNNLMs were evaluated on
the Eval 92 and Eval 93 test sets of the 20k-word WSJ task, with 333
sentences (6080 words) and 213 sentences (3738 words) in Eval 92
and Eval 93, respectively. The baseline word error rate was gener-
ated by Kaldi [25] HMM-DNN recognition system using the stan-
dard DARPA trigram language model, giving WERs of 6.57% for
Eval 92 set and 8.00% for Eval 93 set. From the word lattices pro-
duced by this system, we derived n-best sentence hypotheses with n
= 100. The Dev 93 set was used for model selection. In the backward

model selection, the RNNLMs were selected from the 25 RNNLMs
(5 clustering methods times 5 different initializations).
4.3.1. Perplexity

Eval 92 Eval 93
Trigram 120.6 121.3

Frequency 104.7 105.2
Brown 96.1 96.9
CBOW 101.2 99.1

CSG 100.2 99.8
Tag 100.6 102.6

Mean PPL of all RNNLMs 100.6 100.7

Table 3: WSJ test sets PPLs by individual LMs
Table 3 shows the average test set PPLs for the individual

RNNLMs of each word clustering as well as the trigram LM. The
PPL results of combining models over different weight initializa-
tions for each class LM as well as combining models from five
different class LMs (similar to the Penn Treebank task) are shown in
Table 4. As in Section 4.2, we again observe that model combination
clearly improved PPL over the individual models on the two WSJ
test sets: combining 5 RNNLMs with the same clustering achieved
5.3% to 13.3% relative PPL reductions over the average PPL of the
five models on the two test sets; combining five RNN models from
different classes further reduced PPL by 3.3% and 4.1% relative
to the best combined model of Brown clustering on Eval 92 and
Eval 93 sets, respectively. These results indicate that different word
class partitions can capture different properties of language, and this
useful property should be exploited in class-based RNNLMs.

Eval 92 Eval 93
5 Frequency RNNLMs 95.3 95.2
5 Brown RNNLMs 87.3 87.3
5 CBOW RNNLMs 91.2 88.6
5 CSG RNNLMs 91.1 88.8
5 Tag RNNLMs 91.8 92.7
5 different clustering RNNLMs 84.4 83.7

Table 4: WSJ test sets PPLs by combined RNNLMs

4.3.2. Word Error Rate

To rescore the n-best sentence hypotheses by using combined LMs,
two ways of integrating the LM scores were considered. One was av-
eraging the word probabilities of different LMs as defined by Eq.(6),
referred to as linear combination. Another was averaging the log
word probabilities of different LMs, referred to as log-linear combi-
nation:

logP (w) =
1

N

N∑
j=1

logPj(w) (7)

The n-best sentence hypotheses were rescored by combining the
log scores of acoustic and language models:

S(hi) = logA(hi) +W ∗ logL(hi) (8)

where hi is the ith hypothesis in the n-best list of a sentence, W
is language model scale, A(hi) is the sentence likelihood score from
acoustic model and L(hi) is the sentence probability from a com-
bined LM. In our experiments, W was fixed as 15. Additionally,
each language model obtained from RNNLM combination was lin-
early or log-linearly interpolated with the trigram LM by following
the way the RNNLMs were combined, and the interpolation weight
for the trigram LM was set as 0.3.
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Eval 92 Eval 93
Trigram LM 6.58 8.00
Frequency RNNLM 5.78 ± 0.12 7.37 ± 0.15
Brown RNNLM 5.65 ± 0.09 7.17 ± 0.18
CBOW RNNLM 5.81 ± 0.13 7.22 ± 0.19
CSG RNNLM 5.87 ± 0.18 7.16 ± 0.14
Tag RNNLM 5.65 ± 0.13 7.17 ± 0.17
Mean WER of all RNNLMs 5.75 7.22

Table 5: WERs (%) by individual LMs on WSJ test sets

We first show the mean and standard deviation of WER results
from single language model based n-best rescoring in Table 5. The
RNNLMs reduced WER over the trigram LM by 0.71% to 0.93% on
Eval 92 set, and by 0.63% to 0.84% on Eval 93 set.

The WER results of linearly combining RNNLMs are provided
in Table 6. For each word clustering, five RNNLMs were combined
for comparison. In addition, we used the model selection procedure
of Section 3.2 to select 5 RNNLMs from the pool of 25 RNNLMs.

On the Eval 92 test set, the proposed model selection reduced
WER by 0.45% (absolute) and 7.83% (relative) over the mean
WER of individual RNNLMs in Table 5. Combining the selected
RNNLMs reduced WER by 0.18% (absolute) and 3.3% (relative)
over the average WER of the combined RNNLMs of the same clus-
tering (5.48%). It is clear that combining models from the same class
LM improved WER, but combining models of different word clus-
terings in general produced larger error reductions (except for the
combined Brown RNNLM). When the models were combined with
the trigram model, word errors were further reduced. On the Eval 93
test set, the combined RNNLMs of different word clusterings gave
the lowest WERs without or with the trigram LM.

Model combination
Eval 92 Eval 93

RNN +3-gram RNN +3-gram
5 Frequency RNNLMs 5.51 5.37 7.13 7.28
5 Brown RNNLMs 5.25 5.09 6.96 6.67
5 CBOW RNNLMs 5.49 5.19 6.96 6.70
5 CSG RNNLMs 5.64 5.37 6.90 6.55
5 Tag RNNLMs 5.49 5.30 6.99 6.50
5 Selected LMs 5.30 5.19 6.73 6.50

Table 6: WERs (%) by linearly combined LMs on WSJ test sets

The results for log-linear combination of the RNNLMs are
shown in Table 7. The WER patterns are similar to that of linear
model combination, and our model selection method achieved best
results in three out of four cases.

Model combination
Eval 92 Eval 93

RNN +3-gram RNN +3-gram
5 Frequency RNNLMs 5.55 5.42 7.37 7.05
5 Brown RNNLMs 5.37 5.17 7.02 6.58
5 CBOW RNNLMs 5.44 5.21 6.87 6.70
5 CSG RNNLMs 5.67 5.33 6.90 6.53
5 Tag RNNLMs 5.51 5.28 6.96 6.73
5 Selected LMs 5.02 4.86 6.76 6.61

Table 7: WERs (%) by log-linearly combined
LMs on WSJ test sets

In Table 8, we further give WERs averaged over Eval 92 and
Eval 93 test sets, with the averaging weights proportional to the word
counts in the two sets. It is seen that on the combined two test sets,
linear and log-linear combinations of the selected RNNLMs both

Model combination
Linear Log-linear

RNN +3-gram RNN +3-gram
5 Frequency RNNLMs 6.13 6.09 6.23 6.04
5 Brown RNNLMs 5.90 5.69 5.99 5.68
5 CBOW RNNLMs 6.05 5.76 5.98 5.77
5 CSG RNNLMs 6.12 5.82 6.14 5.79
5 Tag RNNLMs 6.06 5.76 6.06 5.83
5 Selected LMs 5.85 5.69 5.68 5.52

Table 8: Comparison of linearly and log-linearly combined LMs
on WERs (%) averaged over WSJ Eval 92 and Eval 93 test sets

gave best results, with log-linear combination performed somewhat
better.

4.4. Cluster and Model Diversity Analysis
To assess the differences between the investigated word classes, we
used Jaccard index [27] to measure the similarity between each pair
of word clusterings. The larger the Jaccard index, the more similar
the clusterings, and the index becomes 1 if two clusterings are the
same. Table 9 shows the Jaccard index results. It is seen that the
largest index value was 0.141 between CBOW and CSG, which was
reasonable as both methods used k-means clustering on word em-
bedding features; the smallest value of 0.007 occurred between the
Tag and Frequency binning clusterings, which was also sensible as
words were clustered by their grammatical roles in the former and
by their unigram occurrences in the latter. The index values between
different clusterings were all small, which indicates the diversity of
the different clustering strategies. This further validates that different
word clusterings could capture different properties of words, which
makes our proposed combining strategy effective.

Freq Brown Tag CBOW CSG

Freq 1 0.016 0.007 0.008 0.008
Brown 0.016 1 0.04 0.045 0.026
Tag 0.007 0.04 1 0.018 0.01
CBOW 0.008 0.045 0.018 1 0.141
CSG 0.008 0.026 0.01 0.141 1

Table 9: Jaccard index between clusters

5. CONCLUSION AND FUTURE WORK
We have investigated using multiple word clusterings in class-based
RNNLMs for ensemble RNN language modeling. We have shown
that varying the clustering criteria and the space of word embedding
help produced different word/class factorizations which are more ef-
fective for training diverse RNNLMs than varying the RNN learning
initial conditions. Our proposed greedy method for model selection
is able to select relatively diverse base RNNLMs for combination.
We have evaluated our proposed method on 10k-word Penn Tree-
bank and 20k-word WSJ task. Encouraging results were obtained
on both test set perplexity and word error rate. In a future work, we
plan to investigate using more clustering criteria and word embed-
ding features for word/class factorization, developing more sophis-
ticated context-sensitive model combining methods, and conducting
experiments on larger tasks.
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