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ABSTRACT

Adding context information into recurrent neural network
language models (RNNLMs) have been investigated recently
to improve the effectiveness of learning RNNLM. Conven-
tionally, a fast approximate topic representation for a block
of words was proposed by using corpus-based topic distribu-
tion of word incorporating latent Dirichlet allocation (LDA)
model. It is then updated for each subsequent word using
an exponential decay. However, words could represent dif-
ferent topics in different documents. In this paper, we form
document-based distribution over topics for each word using
LDA model and apply it in the computation of fast approxi-
mate exponentially decaying features. We have shown exper-
imental results on a well known Penn Treebank corpus and
found that our approach outperforms the conventional LDA-
based context RNNLM approach. Moreover, we carried out
speech recognition experiments on Wall Street Journal corpus
and achieved word error rate (WER) improvements over the
other approach.

Index Terms— Recurrent neural network, language mod-
eling, latent Dirichlet allocation, speech recognition

1. INTRODUCTION

Statistical n-gram language models (LMs) is an important
part for many applications such as speech recognition, infor-
mation retrieval, machine translations, etc. They generalize
poorly due to insufficiencies of training data which encoun-
ters a data sparseness problem and it is traditionally handled
by using backoff smoothing approaches with lower-order lan-
guage models [1, 2]. Moreover, they cannot capture the long-
range information of natural language. Several approaches
such as cache-based LM [3], topic models [4, 5, 6] have been
used to capture long-range information of natural language [7,
8, 9]. Recently, recurrent neural network LM (RNNLM) [10]
have been shown a big impact in the language modeling re-
search. These models are different from a classical feed-
forward neural network language model (FFNNLM) [11].

A FFNNLM avoids the data sparseness problem by learn-
ing distributed representation of words as non-linear com-
binations of weights in a neural net. Here, the recent his-

tory with a fixed length window are mapped into a continu-
ous space and then the word probabilities given the history
words are estimated. In a FFNNLM, long-term dependency
can only be captured with increasing computational cost in
linear way. Recurrent NNLM (RNNLM) [10] can capture
long-term dependencies by using a recurrent connection in
the hidden layer from the previous time step. The long-range
context information are stored in the hidden layer as a mem-
ory of the model. However, the RNN is theoretically powerful
and is considered hard to train practically because of the so-
called vanishing and exploding gradient problems [12, 13]. A
simple efficient strategy of gradient clipping was introduced
in [14] to avoid the exploding gradient problem.

Nevertheless, the RNN suffers from the gradient vanish-
ing problem as the gradient backpropagated in time and their
magnitude shrink close to zero. As a result, it is difficult
for the model to learn longer terms [15]. Many methods
have been proposed to overcome this problem. A complex
model named as long short term memory RNN (LSTM-RNN)
LM [16] was investigated where the recurrent hidden units are
replaced with LSTM cell incorporating gating units. In [15],
a modification of the RNNLM was introduced where the con-
text information is learned in a context layer. Various kinds
of pre-trained features have been incorporated into RNNLM
[17, 18, 19, 20, 21].

In [17], an LDA-based RNNLM defined as (RNN-LDA)
LM was proposed where topic distribution of a block of pre-
ceding words of the current word are computed. However,
an LDA representation for each word given its sentence pre-
fix is an expensive process. To avoid this process, an effi-
cient fast approximate topic representation was investigated
where the topic distribution for a block of words is computed
by renormalizing the multiplication of individual distribution
over topics for each word in the block and updated for each
subsequent word using an exponential decay. The topic dis-
tribution for each word is created by normalizing the word
probabilities for topics of the corpus derived using the LDA
model. We define it in this paper as corpus-based topic dis-
tribution of word. However, words may describe different
topics in different documents. For example, the word bank
may describe financial topic in one document and river topic
in another document [22]. Therefore, document-based topic
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distribution of words should be more appropriate in the com-
putation of the above approximate features. This motivates
us to modify the RNN-LDA LM using document-based topic
distribution of words and we define our approach as document
RNN-LDA (DRNN-LDA) LM.

2. LATENT DIRICHLET ALLOCATION

Latent Dirichlet allocation (LDA) is a three-level hierarchical
Bayesian model. It is a generative probabilistic topic model
for documents in a corpus. The documents are represented
by random latent topics, which are characterized by a distri-
bution over words. The LDA model can be described in the
following way. Each document d = w1, · · · , wN is gener-
ated as a mixture of unigram models, where the topic mixture
vector θd is drawn from the Dirichlet distribution with pa-
rameter α. Here, N is the document length sampled from
a Poisson distribution. The corresponding topic sequence
z = z1, · · · , zN is generated using the multinomial distri-
bution θd. Each word wn is generated using the distribution
p(wn|zn, β). The Dirichlet priors α and β are the corpus level
parameters that are assumed to be sampled once in generating
the corpus. The parameters θ are document-level variables
and sampled once per document. The variables z and w are
word-level variables and sampled once for each word in each
document. After LDA training, an inference method can
be applied to obtain the topic distribution of an unseen docu-
ment. A varional inference method for learning the model can
be found in [6]. In this paper, we have used the implemention
of [6] found in (http://www.cs.princeton.edu/∼blei/lda-c/) for
LDA training and inference.

3. RECURRENT NEURAL NETWORK LM WITH
FEATURE LAYER

RNNLM with feature layer [17] contains an input layer, a fea-
ture layer, a hidden layer and an output layer. The hidden
layer has a recurrent connection that allows the propagation
of the previous state information of the hidden layer. The fea-
ture layer is connected to both the hidden and output layer.
The weight of each connection is stored in a weight matrix.
In Figure 1, an input vector w(t) encodes an input word at
time t using 1-of-A encoding, also known as one-hot repre-
sentation. It uses an index to each word in the vocabulary
of size A and a word is encoded with 1 in its index position
and all other coefficients are set to 0. The feature layer k(t)
contains the context information created using RNN-LDA or
DRNN-LDA LMs. The output layer produces a probability
distribution over words at time t given the information in the
hidden layer and the feature layer. The output vector y(t) also
has the same dimension as the input vector w(t). The hidden
layer h(t) stores the previous information and acts as a mem-
ory of the model. The values in the hidden and output layers
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Fig. 1. Recurrent neural network with feature layer.

are calculated as:

h(t) = f(Uw(t) +Wh(t− 1) + Fk(t)) (1)

y(t) = g(V h(t) +Gk(t)) (2)

where U , W , V , F , and G represent the input, recurrent, out-
put, feature input and feature output weight matrices respec-
tively. f(z) and g(zm) are the sigmoid and the soft-max func-
tion respectively. The soft-max function in the output layer
confirms that the output forms a valid probability distribution.
To reduce the computation in the output layer, a simple hierar-
chy of two level soft-max approaches using frequency-based
clustering was investigated in [23]. The training of the model
is to learn the weight matrices that maximize the likelihood of
the training data and it uses validation data for early stopping
and to control learning rate [23]. The model is trained by us-
ing stochastic gradient descent with backpropagation through
time (BPTT ) algorithm [24]. Further details can be found
in [17, 23].

3.1. Conventional and Proposed Fast Approximate Topic
Representations

For RNN-LDA LM, a fast approximate topic representation
for a block of first L words is formed by normalizing the mul-
tiplication of individual distribution over topics for each word
in the block [17]:

kRNN−LDA(t) =
1

Z

L−1∏
i=0

p(z|w(t− i)), (3)

and it is updated for each subsequent word by using an expo-
nential decay [17]:

kRNN−LDA(t) =
1

Z
kRNN−LDA(t− 1)γ(p(z|w(t))(1−γ),

(4)
where γ is an exponential decaying parameter. The distribu-
tion p(z|w(t)) is a vector that describes the probabilities of
topics given word w(t). The vector is obtained by normal-
izing the distribution p(w(t)|z, β) obtained using the LDA
model [6]. Since the topics are equally represented in the
training data, p(z|w(t)) can be obtained as:

p(z|w(t)) = p(w(t)|z, β)∑
z p(w(t)|z, β)

. (5)
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Fig. 2. Topic representation of L words using LDA.

In this paper, we replace the corpus-based topic distri-
bution of word p(z|w(t)) used in [17] with document-based
topic distribution of word which can be defined as:

p(z|w(t), d) = p(w(t)|z, β)p(z|d)∑
z p(w(t)|z, β)p(z|d)

, (6)

where p(z|d) is the vector that represents the topic distribu-
tion of document d. p(z|d) can be obtained using LDA train-
ing and inference procedures [6]. The fast approximate topic
representation for a block of first L words is then created for
DRNN-LDA LM as:

kDRNN−LDA(t) =
1

Z

L−1∏
i=0

p(z|w(t− i), d), (7)

Then, we update the feature vector kDRNN−LDA(t) for each
subsequent word using an exponential decay as [17]:

kDRNN−LDA(t) =
1

Z
kDRNN−LDA(t−1)γ(p(z|w(t), d)(1−γ).

(8)
It should be mention here that the constraint for this approx-
imation to work is to add a small constant to smooth the
distribution p(w(t)|z, β) to avoid extremely small probabil-
ities [17]. In this paper, we use the value of the constant as
1/A, whereA is the size of vocabulary. Figure 2 describes the
generation of topic representation of L words for RNN-LDA
and DRNN-LDA LMs.

4. EXPERIMENTS

4.1. Data and Experimental Details

We evaluated our approach using a well known Penn Tree-
bank (PTB) corpus [17, 25] and Wall Street Journal (WSJ)
corpus [26]. The PTB corpus was used for perplexity eval-
uation. For WER experiments, we selected one million (1
M) words from ’87-89 WSJ text corpus (37 M words) and the
transcription data (17 K words) of si dt 20 folder from CSR-I
(WSJ0) corpus [26] as the training and validation set respec-
tively. The WER experiments are evaluated on the evalua-
tion test, which is a total of 333 test utterances (5643 words)
from the November 1992 ARPA CSR benchmark test data for
non-verbalized vocabularies of 20K words [27]. In our exper-
iments, we replaced the words that are not appeared in the vo-
cabularies with a token <UNK>. The details of the corpora

are described in Table 1. We used an RNNLM toolkit [28]
to train the RNNLM and developed a modified version of the
RNNLM toolkit to train the RNN-LDA LM and DRNN-LDA
LMs. The SRILM toolkit [29] and the HTK toolkit [30] are
used for generating the baseline LM and computing the word
error rate (WER) respectively. The baseline model denoted
as KN5 which is obtained by an interpolated 5-gram model
with modified Kneser-Ney smoothing and no count cutoffs.
For LDA training and inference, we use each non-overlapping
sentence of a corpus as a document. We train and infer the
LDA model for 40 topics and used a fixed α across topics.
We obtained the topic distribution for training, validation and
test documents by normalizing variational Dirichlet parame-
ters found in LDA training and inference procedure [6]. We
used a block size of L=50 words. Using PTB corpus, the best
results for RNN-LDA and DRNN-LDA LMs are achieved us-
ing γ = 0.95 and γ = 0.45 respectively. For WSJ corpus,
the values of γ = 0.9 and 0.4 give the best results for the
RNN-LDA and DRNN-LDA LMs respectively. From Equa-
tion 4 and 8, we can note that the smaller value of γ in-
dicates that the proposed document-based topic distribution
of word generates more topical information than the corpus-
based topic distribution of word. The acoustic model used
for the WER experiments are taken from [31]. It is trained
by using all WSJ and TIMIT training data, the 40-phone set
of the CMU dictionary, approximately 10000 tied-states, 32
Gaussians per state and 64 Gaussians per silence state. The
acoustic waveforms are parameterized into a 39-dimensional
feature vector consisting of 12 cepstral coefficients plus the
0th cepstral, delta and delta delta coefficients, normalized us-
ing cepstral mean subtraction (MFCC0−D−A−Z). We eval-
uated the cross-word models. The values of the beam width,
word insertion penalty, and the language model scale factor
are 350.0, -4.0, and 15.0 respectively [31].

Corpus #Words #VOC
Train Valid Test

PTB 930 K 74 K 82 K 10 K
WSJ 1 M / 37 M 17 K 5643 17662

Table 1. Corpora

4.2. Result on PTB Corpus

In Table 2, we reported validation (Valid) and test perplexity
(PPL) results on PTB corpus using various number of hidden
neurons. Here, we used a factorization of the output layer us-
ing class size of 100 and 5 BPTT steps [23]. From Table 2,
we can note that the proposed DRNN-LDA LM approach
outperforms the RNNLM and the RNN-LDA [17] LM ap-
proaches for all hidden neuron sizes. The best test perplexity
result using DRNN-LDA LM is 114.0 which is obtained using
200 hidden neurons. We performed further experiments with-
out factorization of the output layer using 200 hidden neurons
and the test perplexity results are described in Table 3. Here,
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the result for RNN is reported from [23]. From Table 3, we
can note that our proposed DRNN-LDA LM approach gives
about 14.7% (123 to 104.9) and 10.8% (117.6 to 104.9) per-
plexity reduction over the RNNLM [23] and the conventional
RNN-LDA LM approaches [17] respectively. The results

Language Model H Valid PPL Test PPL
KN5 - 148.0 141.2
RNN 10 239.2 225.0

RNN-LDA 10 199.5 188.7
DRNN-LDA 10 173.8 164.2

RNN 100 150.1 142.1
RNN-LDA 100 136.5 130.7

DRNN-LDA 100 122.0 115.7
RNN 200 142.2 135.2

RNN-LDA 200 132.0 125.7
DRNN-LDA 200 119.1 114.0

Table 2. PPL results on PTB corpus using class size of 100,
BPTT = 5, and different number of hidden (H) neurons.

LM Individual +KN5
KN5 141.2 -
RNN 123 106

RNN-LDA 117.6 102.9
DRNN-LDA 104.9 94.2

Table 3. Test PPL results on PTB corpus using 200 hidden
neurons,BPTT = 5, and without factorizing the output layer.

in (+KN5) are obtained by interpolating the models with the
baseline model using interpolation weight 0.5.

4.3. Results on WSJ Corpus

We created lattices using pruned trigram with modified
Kneser-Ney (KN) smoothing, from which we generated 100-
best lists that are used for the rescoring experiments. The
baseline n-gram language model for rescoring is a modified
KN 5-gram (KN5) model with no count cutoff. The RNNLM,
the RNN-LDA and the DRNN-LDA LMs are trained using 5
BPTT steps and using a class layer in the output layer. The
models are interpolated with the baseline KN5 model with
weight 0.75 for the RNNLM, the RNN-LDA or the DRNN-
LDA LM and 0.25 for the baseline KN5 model. The evalua-
tion test results on 1 M words of WSJ corpus using class size
of 100 is described in Table 4. From Table 4, we can note

Language Model H PPL WER
KN5 - 248.0 12.8
RNN+KN5 200 191.6 11.8
RNN-LDA+KN5 200 186.1 11.6
DRNN-LDA+KN5 200 166.3 11.3

Table 4. Test PPL and WER results on 1 M words of WSJ
corpus using class size 100.

that the interpolation of DRNN-LDA and KN5 LMs (DRNN-

LDA+KN5) gives 11.7%(12.8% to 11.3%), 4.2%(11.8% to
11.3%), and 2.6%(11.6% to 11.3%) relative WER reductions
over the KN5, the RNN+KN5, and the RNN-LDA+KN5 LMs
respectively. We can also note that the RNN-LDA+KN5 LM
yields 0.2% absolute WER improvements over RNN+KN5
LM as in [17] whereas the proposed DRNN-LDA+KN5 LM
gives 0.5% absolute WER improvements with larger perplex-
ity reductions.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduce a simple new LDA-based con-
text RNNLM where the topic representation for a block of
first L words is computed using individual document-based
distribution over topics for each word in the block and then
updated for each subsequent word using a traditional expo-
nential decaying parameter. The new model is compared to
a conventional LDA-based approximate topic representation
approach that use corpus-based topic distribution of word.
The proposed method yields best perplexity results on a well-
known Penn Treebank corpus. This is because the approach
incorporate proper context information as the document-
based topic distribution of word could provide more topical
information than the corpus-based topic distribution of word.
The smaller value of the exponential parameter indicates that
the proposed approach provides more significant context in-
formation than the traditional approach. Furthermore, we
carried out 100-best rescoring experiment using WSJ corpus
and reported WER improvements over the RNNLM and the
RNN-LDA LM approaches. In the future, we will perform
experiments using large amount of data.
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