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ABSTRACT

Spoken dialogue systems must be able to recover gracefully from
unexpected user inputs. In many cases, these unexpected utterances
may be within the scope of the system, but include previously unseen
phrases that the system cannot interpret. In this work, we augment
a spoken dialogue system with the ability to learn about new con-
cepts by conversing with the user in natural language. We present
a novel model that detects phrases corresponding to such concepts,
using information from a neural slotfiller as well as syntactic cues.
The system then prompts the user for a definition of the detected
phrases, and uses these definitions to re-parse the original utterance.
We demonstrate significant gains by learning from the user, com-
pared to a baseline system.

Index Terms— Spoken dialogue systems, interactive learning.

1. INTRODUCTION

With the rise of modern personal assistant applications, building ro-
bust spoken dialogue systems (SDSs) that can handle a wide range
of possible human inputs has become an important real-world chal-
lenge. Recent work has explored the use of machine learning and
deep learning techniques for various components of spoken dialogue
systems [1, 2, 3, 4, 5]; such systems can handle common utterance
patterns by learning from large training datasets, but may struggle
when presented with unfamiliar inputs. Users may use idiosyn-
cratic wording to refer to specific concepts; other phrases (e.g., “my
brother’s house”) have user-specific meanings. Due to the person-
alized nature of these utterances, it is difficult to train a generic ma-
chine learning system to handle all of these correctly.

In this work, we present a spoken dialogue system that can
learn about new concepts through natural language conversation.
Given a user utterance, our system identifies unexpected phrases
that are likely to have semantic content. We use a multi-step pro-
cess in which the system first flags individual words, then expands
these words into pharses based on syntactic cues. Next, the system
prompts the user to define these phrases in natural language. Finally,
it uses these definitions to reinterpret the original utterance and con-
tinue the overall dialogue session. With this strategy, our system can
transparently adapt to the user’s particular language use, enabling
users to express concepts in the way that is most natural to them.

Past work has also explored the use of system clarification ques-
tions in spoken dialogue systems. CLARIE [6] asks clarification
questions when it is unable to parse the entire user utterance, but can-
not query arbitrary spans of the utterance. SPIQA [7] identifies am-
biguous phrases to ask about in an open-domain question answering

∗Work done while the author was an intern at Google Research.

User: I need a reservation on Alice’s birthday at Evvia.
System: Can you define “Alice’s Birthday”?
User: Alice’s birthday is March 9.
System: Reserve(restaurant=Evvia,date=3/9)

Fig. 1. An example dialogue in our domain.

setting, using simple heuristics and treating the question-answering
component as a black box. RUDI [8] prompts the user for additional
details when the user utterance is underspecified. Stoyanchev et al.
[9] study the use of clarification questions to correct errors in speech
recognition. Other previous work [10, 11] has explored dialog agents
that can learn from users in a robot control setting.

Other systems do not ask clarification questions, but can learn
to understand language by interacting with users. Existing personal
assitant applications (e.g., Google Now, Microsoft Cortana, Apple’s
Siri) allow users to choose alternative names for a limited set of enti-
ties, such as contacts. SHRDLURN [12] learns a semantic parser
from scratch given user inputs and feedback about correct deno-
tations. Szymanski and Duch [13] develop a system that can ask
humans for new information about concepts in a knowledge base.
KNOWBOT [14] learns scientific knowledge by asking users for nat-
ural language explanations about science test questions.

Our system is able to identify personalized concepts in user utter-
ances, and can use user definitions to greatly improve upon a base-
line system that cannot ask the user for definitions. Furthermore,
our work highlights the difficulty and importance of building sys-
tems that are robust to distributional shift at test time. In most of
our experiments, our system is trained solely on data that does not
contain user-specific concepts, but nonetheless is expected to drive
reasonable dialogues about these concepts at test time. We show that
a naive baseline system that ignores the difference between training
and testing performs poorly compared to a more refined approach.
Finally, we release all of our data publicly, to encourage further work
on this task.

2. SETUP

2.1. Scenario

We develop our approach in a goal-directed restaurant-booking sce-
nario. Each dialogue starts with a user request for a restaurant reser-
vation with slot-value pairs (e.g. restaurant name, location, time,
date, number of people). As is often the case, the user may refer to
some of the slots (location, time, and date) with personalized values.
Dialogue systems typically do not know how to interpret these val-
ues a priori, because they have different meanings for different users.
Examples of personalized values are shown in Table 1.
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Slot Example Personalized Values
Location Near my workplace, near my parents’ house, . . .
Time Around brunch time, after soccer practice, . . .
Date My mom’s birthday, the end of the semester, . . .

Table 1. A sample of personalized concepts used in our dataset.

2.2. Task

We explore the potential of learning definitions of personalized val-
ues through dialogue, as seen in Figure 1. In our task, the system has
the option of asking the user to define unknown, personalized con-
cepts in natural language. In most of our experiments, the dialogue
system is trained on data that only contains impersonal concepts.
Excluding personalized concepts from training has a twofold moti-
vation. First, data without personalized concepts is straightforward
to collect via crowdsourcing [15], whereas data that covers the en-
tire spectrum of possible personalized concepts is difficult to collect,
without relying on real users. Therefore, this setting approximates
the resources that would be available to developers building a real
spoken dialogue system. Second, we are motivated by the more gen-
eral problem of building systems that are robust to previously unseen
language usage patterns at test time, as such robustness is critical
when interacting with real users. Therefore, we created a test-time
environment that uses concepts never seen during training.

3. MODEL

3.1. Neural slotfiller

To identify slots in the user utterances, we train a recurrent neu-
ral network slotfilling model, similar to previous work [16, 17,
18]. Given an utterance x = x1, . . . , xn, our model predicts
pθ(y1, . . . , yn | x), where yi is the IOB label for xi. Our model
maps each word to a pre-trained word vector from word2vec [19],
then feeds these vectors through two bi-directional LSTM layers,
each of which has 64 hidden units. At the top level, the model uses
a softmax layer to independently predict yi for each i = 1, . . . , n.
We train only on examples without personalized concepts, using
mini-batch RMSProp on the loglikelihood of the gold labels and
dropout of 0.5. We implemented the slotfiller in Tensorflow [20].

3.2. Interpretation

The job of the interpreter is to convert natural language phrases
tagged by the slotfiller into logical values that are understood by the
system. We use a simple interpration module powered by manually
generated regular expressions and lexicon entries.

3.3. Identifying unknown phrases

An important part of our task is identifying unknown phrases, or
phrases that the model can only interpret correctly by asking the
user for a definition (in our dataset, these correspond to personalized
phrases). Our naive baseline system assumes that the slotfiller’s out-
puts are always correct. It computes the argmax predictions of the
slotfiller, and marks a span as unknown if and only if the slotfiller
tagged it as a slot, but it could not be interpreted.

Book a table on my brother ’s next birthday
Before: UNK UNK
After: UNK UNK UNK UNK UNK

det

dobj

case

poss

poss

case amod

nmod

Fig. 2. Our use of the dependency tree. First, other methods mark
“brother’s” (red text) as being unknown. We follow the possessive
dependency edge (red arc) upwards to the parent, then tag that node
and all descendants (blue arcs and text) as unknown.

However, we expect that the slotfiller may not give reliable pre-
dictions when presented with utterances with personalized concepts,
if such concepts were not seen during training. Therefore, we add
some complementary strategies for identifying unknown words even
in the presence of distributional shift. First, given an utterance x, we
try tagging xi as unknown if

max
`∈L

pθ(yi = ` | x) < pthresh, (1)

for some threshold pthresh, where L is the set of all IOB labels. In
other words, we tag the word as unknown if the model is not very
confident about its prediction. Next, from the training data D con-
sisting of gold (x, y) pairs, we build a vocabulary

V̂ = {w : ∃ (x, y) ∈ D s.t. w = xi, yi = O}. (2)

This is the set of words that appear in the training data outside of
any span (represented as O in IOB format). We tag xi as unknown if
the slotfiller predicts yi = O , but xi /∈ V̂ . This procedure is useful
because the slotfiller often defaults to marking words that are unfa-
miliar, such as those in unknown phrases, as O. We also tag words
that the slotfiller tagged as I-<slot> for some slot, but for which
there was no preceding B-<slot>. Finally, we tag as unknown any
words that the baseline tagged as unknown.

The above procedure has relatively high precision, but may miss
many words, resulting in unnatural phrases that are short and frag-
mented. To remedy this problem, we use the dependency parse of
the sentence to expand the set of words we tag, as seen in Figure 2.
For each tagged word, we first traverse the dependency tree upwards
along edges corresponding to compound nouns, adjectival modifiers,
or posessive modifiers—this procedure helps us locate the root of the
noun phrase that this word belongs to. Then, we mark this node and
all its descendents as being unknown. This procedure guides the
system to query syntactically coherent phrases.

Finally, we join adjacent words tagged as unknown into contigu-
ous phrases. The system then asks the user to define each phrase.

3.4. Incorporating user-supplied definitions

After the system asks the user to define each unknown phrase, it
must then use the user-supplied definitions to reinterpret the original
first-turn utterance. We found a simple strategy to work surprisingly
well: we directly replace the unknown phrase from the first-turn ut-
terance with the entire user-supplied definiton. This procedure may
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Test set Precision Recall F1
Basic 79.0 81.4 80.2
Personalized 49.0 48.7 48.9

Table 2. Slotfiller phrase-level metrics on the two test sets.

result in an ungrammatical sentence, but we find that the slotfiller
is able to ignore unnecessary words and perform quite well. Then,
we parse this new sentence with the neural slotfiller and extract slot-
value pairs using the interpretation module.

4. EXPERIMENTS

4.1. Data Collection

We collected data using crowdsourcing, in a manner similar to [15].
To collect first-turn data, we start by randomly generating a set of
“logical forms,” which for us are sets of slot-value pairs. To gen-
erate a logical form, we randomly choose one to three slots from
our schema, then randomly sample a value for each slot from a pre-
defined list of possible values. We send each logical form to two
crowd-workers, and ask each to formulate three different natural
language requests using the given slot-value pairs. Other crowd-
workers then label these utterances by highlighting the parts of the
sentence corresponding to each slot; this step also serves as a quality
control filter.

Next, we collect the second-turn data. We synthetically generate
system-turn questions by extracting spans in the collected utterances
corresponding to user-specific values. For each such span, we gen-
erate the question “Can you define ‘<phrase>’?” We then launch
additional tasks for crowd-workers, in which they are given the first-
turn utterance, the system question, and a non-personalized value
that they are told to use in their response to the system question.
For example, if the user-specific concept was “Alice’s birthday”, we
might tell the crowd workers to use the value Mar 9. Again, each
task is sent to two crowd-workers, who generate three different nat-
ural language responses each. We run labeling on these utterances
as well.

Our final dataset contains 2193 first-turn “basic” utterances with-
out personalized concepts, and 594 first-turn utterances with person-
alized concepts. We split the basic utterances into 1534 train, 219
development, and 440 test examples; we split the personalized first-
turn utterances into 178 development and 416 test examples. For the
personalized data, each first-turn utterance has multiple accompany-
ing follow-up turns. Taking these into account, we had 1281 distinct
development conversations, and 3014 distinct test conversations. We
have made all of our data publicly available 1.

4.2. Slotfiller performance

First, we evaluate the neural slotfiller on its own, on both basic and
personalized data, as shown in Table 2. On the basic test set, the
slotfiller achieves an overall phrase-level F1 score of 80.2. Man-
ual error analysis reveals that many errors are due to inconsisten-
cies in human labeling (e.g., whether “at 7pm” is labeled as a time,
or only “7pm”). Therefore, we are confident that, when presented

1 Our data is available for download at http://stanford.edu/˜robinjia/
data/concept_learning_data.tar.gz

System Word-level Phrase-level
Naive baseline 73.4/46.4/56.8 28.7/27.3/28.0

Scores only 73.3/60.2/66.1 29.6/32.4/31.0
OOV only 77.2/72.9/75.0 30.1/39.1/34.0
Scores + OOV 75.5/74.7/75.1 30.5/40.0/34.6
Scores + syntax 69.9/77.2/73.3 41.1/39.6/40.3
OOV + syntax 71.5/87.1/78.6 35.1/38.9/36.9
Scores + OOV + syntax 70.0/88.5/78.1 36.1/40.0/37.9

Table 3. Evaluation of unknown phrase identification. For each of
the evaluation modes, we report precision/recall/F1.

System Precision Recall F1
No questions baseline 96.1 39.6 56.1
Naive baseline 95.1 49.5 65.1
Our model 95.3 56.9 71.3
Gold questions oracle 93.9 76.7 84.4

Table 4. Slot-level results using simulated end-to-end evaluation on
the personalized test set.

with utterances without personalized expressions, our model is quite
good at identifying slots. However, on the personalized test set, the
slotfiller performs much worse, with an F1 score of 48.9. This re-
sult confirms that the slotfiller cannot generalize well to this out-of-
domain data, despite using pre-trained word embeddings.

4.3. Identifying unknown phrases

Next, we evaluate our system’s ability to extract unknown phrases
from user utterances, as shown in Table 3. We measure both word-
level and phrase-level F1 score. The naive baseline has very low
recall, particularly at the word level, since the slotfiller often ignores
unknown phrases by tagging them as O.

Next, we evaluate our more refined model, using slotfiller confi-
dence scores, vocabulary information, and syntactic information. In
all experiments, we used pthresh = 0.7. All versions of our model
outperform the baseline system. As expected, removing syntactic
features greatly increases word-level recall, but at the cost of some
precision. Adding the slotfiller’s confidence scores do not help much
compared to using out-of-vocabulary information alone. Therefore,
in all following experiments, we only use out-of-vocabulary and syn-
tactic information.

4.4. End-to-end evaluation

To measure our overall system performance, we performed a simu-
lated end-to-end evaluation. We avoid conducting direct end-to-end

System Basic Personalized
Naive baseline 0.30 1.03
Our model 0.38 1.20
Gold questions oracle 0.00 1.08

Table 5. Number of questions asked per dialogue by the system,
compared to the gold questions, on both the basic and personalized
test sets.
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Method Model questions Gold questions
Full substitution 95.3/56.9/71.3 93.9/76.7/84.4
Slotfiller-based 96.0/54.4/69.4 95.3/71.2/81.5
Gold span oracle 95.5/56.6/71.1 93.7/74.2/82.8

Table 6. Simulated end-to-end evaluation using different strate-
gies for using the user-supplied definitions. We report preci-
sion/recall/F1, when using either the model’s predicted questions or
the gold questions.

evaluation with human users for two reasons. First, human evalua-
tion is time-consuming and expensive, which hampers development.
Second, since we tell our crowdworkers what value to use in their re-
sponse, they may give a helpful answer even when the system ques-
tion is nonsensical, which would cause us to overestimate how well
our system works.

Instead, we simulate whole dialogues using our existing data,
and evaluate based on interpreted slot-level F1 score. For each ques-
tion that our system generates, we decide if this question is “similar
enough” to a gold question. If it is, we provide the system the hu-
man response to the gold question; otherwise, we assume the user
provides no response to this question. We define a predicted span
to be “similar enough” to a gold span if the spans overlap and are
identical except for stopwords and punctuation. We use a predefined
list of stopwords from NLTK [21], combined with a few additional
words (e.g. “restaurant”) that are not semantically important in our
particular domain. This is a strict definition of similarity: in practice,
a user may give a helpful definition even if the system drops or adds
some content words.

We compare our best system and the naive baseline to an even
simpler baseline system that does not ask any questions, and only
looks at the first-turn utterance. We also compare to an oracle sys-
tem that always asks the gold questions. In Table 4, we measure
both slot-level F1, after the finishing the dialogue and running inter-
pretation. In Table 5, we count the number of questions asked by the
system—all else being equal, shorter dialogues are more convenient
for the user. Note that the naive model asks 0.30 questions per dia-
logue on the basic data. These a consequence of blind spots in our
simple interpretation module, and are not indicative of our unknown
phrase detection routine reporting false positives.

Next, we evaluate our strategy of substituting the entire user-
supplied definition for the unknown phrase. We compare to an alter-
native in which we run the slotfiller on the definition, extract exactly
one slot, and replace the unknown phrase in the first turn with the
extracted phrase. We also compare to an oracle that replaces the un-
known phrase with the gold span tagged in the definition by human
raters. In Table 6, we see that our strategy is very effective, do-
ing better than the slotfiller-based approach, and matching the oracle
performance. We believe that preserving the context words in both
the definition and the first-turn utterance helps the slotfiller.

4.5. Adding personalized data

Finally, we measure how much the system can improve when given
a small amount of training data involving personalized concepts—
in our case, the 178-example personalized development set. This
scenario simulates what might happen after an initial system is de-
ployed, and user data with personalized concepts is now available.

System Precision Recall F1 Num. Q’s
Fine-tuned slotfiller

Naive 94.4 66.9 78.3 1.26
Our model 94.9 56.8 71.1 1.20

Lexicon
Naive 96.5 51.3 67.0 0.66
Our model 94.9 57.9 71.9 0.66

Fine-tuned + lexicon
Naive 94.7 67.9 79.1 0.36
Our model 94.5 58.4 72.2 0.49

Table 7. End-to-end slot-level metrics and number of questions
asked on the personalized test set, with personalized training data.

We explore two different ways to use this additional data. First,
we retrain the neural slotfiller on this new personalized data in ad-
dition to the original basic training data, using the exact same hy-
perparameters. Second, we build a lexicon mapping gold unknown
phrases in the personalized development data to user-supplied defi-
nitions. During evaluation, when the system identifies an unknown
phrase, it first checks the lexicon: if the exact phrase is there, it uses
the definition from the lexicon instead of asking the user. This sec-
ond method assumes that the new personalized data comes from the
same user that the system is currently interacting with.

Table 7 shows the effects of these adjustments, both indepen-
dently and together. After fine-tuning the slotfiller, the naive base-
line outperforms our full system; now that the slotfiller has seen data
on personalized concepts, trusting its predictions on similar data at
test time is a good idea. As expected, using the lexicon reduces the
number of questions asked. Slot-level performance also increases
slightly, because the lexicon helps the system when it asks a ques-
tion that is slightly off from the gold question.

5. DISCUSSION

Much future work remains to improve our system, beginning with
the problem of natural language generation (NLG). We used a simple
NLG module, with just a single template. If we could predict the
type of unknown phrases, we might be able to use a richer set of type-
specific templates (e.g. asking “When is Bob’s birthday?” instead
of simply “Can you define ‘Bob’s birthday’?”). It would also be
interesting to learn to handle cases where the phrase in the utterance
should not be directly copied into the question, for example in the
case of personal pronouns (e.g., if the user says “my birthday”, the
system should ask, “When is your birthday?”). Recent work on
neural NLG [2] could be useful to learn these non-trivial patterns.

Our experiments showed that different techniques work best de-
pending on whether a given utterance is similar enough to what was
seen during training time. A natural next step would be to identify
distributional shift on the fly, so that the system can trust its machine
learning components on in-domain data, but fall back on more robust
strategies on data it was not trained to handle. Ultimately, any suc-
cessful spoken dialogue system must be able to adapt to new users
and new language use at test time.
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