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ABSTRACT

Recurrent neural network (RNN) based character-level language mod-
els (CLMs) are extremely useful for modeling out-of-vocabulary
words by nature. However, their performance is generally much
worse than the word-level language models (WLMs), since CLMs
need to consider longer history of tokens to properly predict the next
one. We address this problem by proposing hierarchical RNN archi-
tectures, which consist of multiple modules with different timescales.
Despite the multi-timescale structures, the input and output layers
operate with the character-level clock, which allows the existing RNN
CLM training approaches to be directly applicable without any modi-
fications. Our CLM models show better perplexity than Kneser-Ney
(KN) 5-gram WLMs on the One Billion Word Benchmark with only
2% of parameters. Also, we present real-time character-level end-to-
end speech recognition examples on the Wall Street Journal (WSJ)
corpus, where replacing traditional mono-clock RNN CLMs with the
proposed models results in better recognition accuracies even though
the number of parameters are reduced to 30%.

Index Terms— Character-level language model, hierarchical
recurrent neural network, long short-term memory

1. INTRODUCTION

Language models (LMs) show the probability distribution over se-
quences of words or characters, and they are very important for many
speech and document processing applications including speech recog-
nition, text generation, and machine translation [1, 2, 3]. LMs can
be classified into character-, word-, and context-levels according to
the unit of the input and output. In the character-level LM (CLM)
[2], the probability distribution of the next characters are generated
based on the past character sequences. Since the number of alphabets
is small in English, for example, the input and output of the CLM is
quite simple. However, the word-level LM (WLM) is usually needed
because the character-level modeling is disadvantaged in utilizing the
long period of past sequences. However, the problem of the word-
level model is the complexity of the input and output because the
vocabulary size to be supported can be bigger than 1 million.

LMs have long been developed by analyzing a large amount of
texts and storing the probability distribution of word sequences into
the memory. The statistical language model demands a large memory
space, often exceeding 1 GB, not only because the vocabulary size is
large but also their combinations needs to be considered. In recent
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years, the language modeling based on recurrent neural networks
(RNNs) have been actively investigated [4, 5]. However, the RNN
based WLMs still demand billions of parameters because of the large
vocabulary size.

In this work, we propose hierarchical RNN based LMs that com-
bine the advantageous characteristics of both character- and word-
level LMs. The proposed network consists of a low-level and a high-
level RNNs. The low-level RNN employs the character-level input
and output, and provides the short-term embedding to the high-level
RNN that operates as the word-level RNN. The high-level RNN do
not need complex input and output because it receives the character-
embedding information from the low-level network, and sends the
word-prediction information back to the low-level in a compressed
form. Thus, when considering the input and output, the proposed
network is a CLM, although it contains a word-level model inside.
The low-level module operates with the character input clock, while
the high-level one runs with the space (<w>) and sentence boundary
tokens (<s>) that separates words. We expect this hierarchical LM
can be extended for processing a longer period of information, such
as sentences, topics, or other contexts.

2. RELATED WORK

2.1. Character-level language modeling with RNNs

CLMs need to consider longer sequence of history tokens to predict
the next token than the WLMs, due to the smaller unit of tokens.
Therefore, traditional N -gram models cannot be employed for CLMs.
Thanks to the recent advances in RNNs, RNN-based CLMs has begun
to show satisfactory performances [2, 6]. Especially, deep long short-
term memory (LSTM) [7] based CLMs show excellent performance
and successfully applied to end-to-end speech recognition system [8].

For training RNN CLMs, training data should be first converted
to the sequence of one-hot encoded character vectors, xt, where
the characters include word boundary symbols, <w> or space, and
optionally sentence boundary symbols, <s>. Then, as shown in
Figure 1, the RNN is trained to predict the next character xt+1 by
minimizing the cross-entropy loss of the softmax output [9] that
represents the probability distributions of the next character.

2.2. Character-aware word-level language modeling

There has been many attempts to make WLMs understand character-
level inputs. One of the most successful approaches is to encode the
arbitrary character sequence to fixed dimensional vector, which is
called word embedding, and feed this vector to the word-level RNN
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Fig. 1: Training an RNN-based CLM.

LMs. In [10], convolutional neural networks (CNNs) are used to
generate word embeddings, and achieved the state of the art results
on English Penn Treebank corpus [11]. The similar CNN-based
embedding approach is used by [5] with very large LSTM networks
on the One Billion Word Benchmark [12], also achieving the state
of the art perplexity. In [13, 14], bidirectional LSTMs are employed
instead of CNNs for word embedding. However, in all of these
approaches, LMs still generate the output probabilities at the word-
level. Although the character-level modeling approach of the output
word probability is introduced using CNN softmax in [5], the base
LSTM network still runs with a word-level clock.

Our approach is different from the above ones in many ways.
First, our base model is the character-level RNN LMs, instead of
WLMs, and we extend this model to enhance the model to consider
long-term contexts. Therefore, the output probabilities are generated
with a character-level clocks. This property is extremely useful for
character-level beam search for end-to-end speech recognition [8].
Also, the input and output of our model are the same as those of
the traditional character-level RNNs, thus the same training algo-
rithm and recipe can be used without any modifications. Furthermore,
the proposed models have significantly less number of parameters
compared to WLM-based ones, since the size of our model does
not directly depend on the vocabulary size of the training set. Note
that a similar hierarchical concept has been used for character-level
machine translation [15]. However, we propose more general hierar-
chical unidirectional RNN architecture that can be applied for various
applications.

3. RNNS WITH EXTERNAL CLOCK AND RESET
SIGNALS

In this section, we generalize the existing RNN structures and extend
them with external clocks and reset signals. The extended models
become the basic building blocks of the hierarchical RNNs.

Most types of RNNs or recurrent layers can be generalized as

st = f(xt, st−1) , yt = g(st) (1)

where xt is the input, st is the state, yt is the output at time step t,
f(·) is the recurrence function, and g(·) is the output function. For
example, a hidden layer of Elman networks [16] can be written as

yt = st = ht = σ(Whxxt +Whhht−1 + bh) (2)

where ht is the activation of the hidden layer, σ(·) is the activation
function, Whx and Whh are the weight matrices and bh is the bias
vector.

LSTMs [7] with forget gates [17] and peephole connections [18]
can also be converted to the generalized form. The forward equations
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Fig. 2: Hierarchical RNN (HRNN).

of the LSTM layer are as follows:

it = σ(Wixxt +Wihht−1 +Wimmt−1 + bi) (3)
ft = σ(Wfxxt +Wfhht−1 +Wfmmt−1 + bf ) (4)

mt = ft ◦mt−1 + it ◦ tanh(Wmxxt +Wmhht−1 + bm) (5)
ot = σ(Woxxt +Wohht−1 +Wommt + bo) (6)
ht = ot ◦ tanh(mt) (7)

where it, ft, and ot are the input, forget, and output gate values,
respectively, mt is the memory cell state, ht is the output activation
of the layer, σ(·) is the logistic sigmoid function, and ◦ is the element-
wise multiplication operator. These equations can be generalized by
setting st = [mt,ht] and yt = ht.

Any generalized RNNs can be converted to the ones that incorpo-
rate an external clock signal, ct, as

st = (1− ct)st−1 + ctf(xt, st−1) , yt = g(st) (8)

where ct is 0 or 1. The RNN updates its state and output only when
ct = 1. Otherwise, when ct = 0, the state and output values remain
the same as those of the previous step.

The reset of RNNs is performed by setting st−1 to 0. Specifically,
(8) becomes

st = (1− ct)(1− rt)st−1 + ctf(xt, (1− rt)st−1) (9)

where the reset signal rt = 0 or 1. When rt = 1, the RNN forgets
the previous contexts.

If the original RNN equations are differentiable, the extended
equations with clock and reset signals are also differentiable. There-
fore, the existing gradient-based training algorithms for RNNs, such
as backpropagation through time (BPTT), can be employed for train-
ing the extended versions without any modifications.

4. CHARACTER-LEVEL LANGUAGE MODELING WITH
A HIERARCHICAL RNN

The proposed hierarchical RNN (HRNN) architectures have several
RNN modules with different clock rates as depicted in Figure 2.
The higher level module employs a slower clock rate than the lower
module, and the lower level module is reset at every clock of the
higher level module. Specifically, if there are L hierarchy levels, then
the RNN consists of L submodules. Each submodule l operates with
an external clock cl,t and a reset signal rl,t, where l = 1, · · · , L. The
lowest level module, l = 1, has the fastest clock rate, that is, c1,t = 1
for all t. On the other hand, the higher level modules, l > 1, have
slower clock rates and cl,t can be 1 only when cl−1,t is 1. Also, the
lower level modules l < L are reset by the higher level clock signals,
that is, rl,t = cl+1,t.

The hidden activations of a module, l < L, are fed to the next
higher level module, l + 1, delayed by one time step to avoid un-
wanted reset by rl,t = cl+1,t = 1. This hidden activation vector,
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Fig. 3: Two-level hierarchical LSTM (HLSTM) structures for CLMs.

or embedding vector, contains compressed short-term context infor-
mation. The reset of the module by the higher level clock signals
helps the module to concentrate on compressing only the short term
information, rather than considering longer dependencies. The next
higher level module, l + 1, process this short-term information to
generate the long-term context vector, which is fed back to the lower
level module, l. There is no delay for this context propagation.

For character-level language modeling, we use a two-level (L =
2) HRNN with letting l = 1 be a character-level module and l = 2
be a word-level module. The word-level module is clocked at the
word boundary input, <w>, which is usually a whitespace character.
The input and softmax output layer is connected to the character-
level module, and the current word boundary token (e.g. <w> or
<s>) information is given to the word-level module. Since this
HRNNs have a scalable architecture, we expect this HRNN CLM
can be extended for modeling sentence-level contexts by adding an
additional sentence-level module, l = 3. In this case, the sentence-
level clock, c3,t becomes 1 when the input character is a sentence
boundary token <s>. Also, the word-level module should be clocked
at both the word boundary input, <w>, and the sentence boundary
input, <s>. In this paper, the experiments are performed only with
the two-level HRNN CLMs.

We propose two types of two-level HRNN CLM architectures. As
shown in Figure 3, both models have two LSTM layers per submodule.
Note that each connection has a weight matrix. In the HLSTM-A
architecture, both LSTM layers in the character-level module receives
one-hot encoded character input. Therefore, the second layer of
the character-level module is a generative model conditioned by the
context vector. On the other hand, in HLSTM-B, the second LSTM
layer of the character-level module does not have direct connection
from the character inputs. Instead, a word embedding from the first
LSTM layer is fed to the second LSTM layer, which makes the first
and second layers of the character-level module work together to
estimate the next character probabilities when the context vector is
given. The experimental results show that HLSTM-B is more efficient
for CLM applications.

Since the character-level modules are reset by the word-boundary
token (i.e. <w> or whitespace), the context vector from the word-
level module is the only source for the inter-word context information.
Therefore, the model is trained to generate the context vector that
contains useful information about the probability distribution of the
next word. From this perspective, the word-level module in both
HRNN CLM architectures can be considered as a word-level RNN
LM, where the input is a word embedding vector and the output is
a compressed descriptor of the next word probabilities. Although
the proposed model consists of several RNN modules with different

Table 1: Perplexities of CLMs on the WSJ corpus

Model Size # Params BPC Word PPL

Deep LSTM 2x512 3.23 M 1.148 99.5
Deep LSTM 4x512 7.43 M 1.132 93.3
Deep LSTM 4x1024 29.54 M 1.101 82.4

HLSTM-A 4x512 7.50 M 1.089 78.5
HLSTM-B (no reset) 4x512 8.48 M 1.080 75.7
HLSTM-B 4x512 8.48 M 1.073 73.6
HLSTM-B 4x1024 33.74 M 1.058 69.2

Table 2: Perplexities of WLMs on the WSJ corpus in the literature

Model # Params PPL

KN 5-gram (no count cutoffs) [26] - 80
RNN-640 + ME 4-gram feature [26] 2 G 59

timescales, these can be jointly trained by BPTT as described in
Section 3.

5. EXPERIMENTS

The proposed HRNN based CLMs are evaluated with two text
datasets: the Wall Street Journal (WSJ) corpus [19] and One Billion
Word Benchmark [12]. Also, we present an end-to-end speech
recognition example, where HLSTM CLMs are employed for prefix
tree-based beam search decoding.

The RNNs are trained with truncated backpropagation through
time (BPTT) [20, 21]. Also, ADADELTA [22] and Nesterov mo-
mentum [23] is applied for weight update. No regularization method,
such as dropout [24], is employed. The training is accelerated using
GPUs by training multiple sequences in parallel [25].

5.1. Perplexity

In this section, our models are compared with other WLMs in the
literature in terms of word-level perplexity (PPL). The word-level PPL
of our models is directly converted from bits-per-character (BPC),
which is the standard performance measure for CLMs, as follows:

PPL = 2
BPC× Nc

Nw (10)

where Nc and Nw are the number of characters and words in a test
set, respectively. Note that sentence boundary symbols (<s>) are
also regarded as characters and words.

5.1.1. Wall Street Journal (WSJ) corpus

The Wall Street Journal (WSJ) corpus [19] is designed for training
and benchmarking automatic speech recognition systems. For the per-
plexity experiments, we used the non-verbalized punctuation (NVP)
version of the LM training data inside the corpus. The dataset consists
of about 37 million words, where one percent of the total data is held
out for the final evaluation and does not participate in training. All
alphabets are converted to the uppercases.

Table 1 shows the perplexities of traditional mono-clock deep
LSTM and HLSTM based CLMs on the held-out set. Note that
the size NxM means that the network consists of N LSTM layers,
where each layer contains M memory cells. The HLSTM models
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Table 3: Perplexities of the HRNN CLMs on the One Billion Word
Benchmark

Model Size # Params BPC Word PPL

HLSTM-B 4x512 9.06 M 1.228 83.3
HLSTM-B 4x1024 34.90 M 1.140 60.7

Table 4: Perplexities of WLMs on the One Billion Word Benchmark
in the literature

Model # Params PPL

Sigmoid RNN-2048 [29] 4.1 G 68.3
Interpolated KN-5, 1.1B n-grams [12] 1.76 G 67.6
LightRNN [30] 41 M 66
Sparse non-negative matrix LM [31] 33 G 52.9
RNN-1024 + ME 9-gram feature [12] 20 G 51.3
CNN input + 2xLSTM-8192-1024 [5] 1.04 G 30.0

show better perplexity performanes even when the number of LSTM
cells or parameters is much smaller than that of the deep LSTM
networks. Especially, HLSTM-B network with the size of 4x512 has
about 9% lower perplexity than deep LSTM (4x1024) model, even
with only 29% of parameters.

It is important to reset the character-level modules at the word-
level clocks for helping the character-level modules to better concen-
trate on the short-term information. As observed in Table 1, removing
the reset functionality of the character-level module of the HLSTM-B
model results in degraded performance.

The non-ensemble perplexities of WLMs in the literature are
presented in Table 2. The Kneser-Ney (KN) smoothed 5-gram model
(KN-5) [27] is a strong non-neural WLM baseline. With the standard
deep RNN based CLMs, it is very hard to beat KN-5 in terms of
perplexity. However, it is surprising that all HLSTM models in Table 1
shows better perplexities than KN-5 does. The RNN based WLM
model combined with the maximum entropy 4-gram feature [28, 26]
shows much better results than the proposed HLSTM based CLM
models. However, like most of the WLMs, it also needs a very large
number (2 G) of parameters and cannot handle out-of-vocabulary
(OOV) words.

5.1.2. One Billion Word Benchmark

The One Billion Word Benchmark [12] dataset contains about 0.8
billion words and roughly 800 thousand words of vocabulary. We
followed the standard way of splitting the training and test data as
in [12]. Each byte of UTF-8 encoded text is regarded as a character.
Therefore, the size of the character set is 256.

Due to the large amount of training data and weeks of training
time, only two HLSTM-B experiments are conducted with the size of
4x512 and 4x1024. As shown in Table 3, there are large gap (22.5)
in word-level perplexity between the two models. Therefore, further
improvement in perplexity can be expected with bigger networks.

The perplexities of other WLMs are summarized in Table 4.
The proposed HLSTM-B model (4x1024) shows better perplexities
than the interpolated KN-5 model with 1.1 billion n-grams [12] even
though the number of parameters of our model is only 2% of that of
the KN-5 model. Also, our model performs better than LightRNN
[30], which is a word-level RNN LM that has about 17% more param-
eters than ours. However, much lower perplexities are reported with

Table 5: End-to-end ASR results on the WSJ Nov’92 20K evaluation
set (eval92)

Model Size # Params Word PPL WER

Deep LSTM 4x512 7.43 M 93.3 8.36%
Deep LSTM 4x1024 29.54 M 82.4 7.85%

HLSTM-B 4x512 8.48 M 73.6 7.79%
HLSTM-B 4x1024 33.74 M 69.2 7.78%

sparse non-negative matrix LM and the maximum entropy feature
based RNN model [12], where the number of parameters are 33 G
and 20 G, respectively. Recently, the state of the art perplexity of
30.0 was reported in [5] with a single model that has 1 G parame-
ters. The model is basically a very large LSTM LM. However, the
convolutional neural network (CNN) is used to generate word embed-
ding of arbitrary character sequences as the input of the LSTM LM.
Therefore, this model can handle OOV word inputs, however, still the
model runs with a word-level clock.

5.2. End-to-end automatic speech recognition (ASR)

In this section, we apply the proposed CLMs to the end-to-end au-
tomatic speech recognition (ASR) system to evaluate the models in
more practical situation than just measuring perplexities. The CLMs
are trained with WSJ LM training data as in Section 5.1.1. Unlike
WLMs, the proposed CLMs have very small number of parameters,
so they can be employed for real-time character-level beam search.

The incremental speech recognition system proposed in [8] is
used for the evaluation. The acoustic model is 4x512 unidirectional
LSTM and end-to-end trained with connectionist temporal classifi-
cation (CTC) loss [32] using the non-verbalized punctuation (NVP)
portion of WSJ SI-284 training set. The acoustic features are 40-
dimensional log-mel filterbank coefficients, energy and their delta
and double-delta values, which are extracted every 10 ms with 25
ms Hamming window. The beam-search decoding is performed on a
prefix-tree with depth-pruning and width-pruning [8]. The insertion
bonus is 1.6, the LM weight is 2.0, and the beam width is 512.

The results are summarized in Table 5. It is observed that the per-
plexity of LM and the word error rate (WER) have strong correlation.
As shown in the table, we can achieve a better WER by replacing the
traditional deep LSTM (4x1024) CLM with the proposed HLSTM-B
(4x512) CLM, while reducing the number of LM parameters to 30%.

6. CONCLUDING REMARKS

In this paper, hierarchical RNN (HRNN) based CLMs are proposed.
The HRNN consists of several submodules with different clock rates.
Therefore, it is capable of learning long-term dependencies as well as
short-term details. The experimental results on One Billion Bench-
mark show that HLSTM-B networks significantly outperform Kneser-
Ney 5-gram LMs with only 2% of parameters. Although other RNN-
based WLMs show better performance than our models, they have
impractically many parameters. On the other hand, as shown in the
WSJ speech recognition example, the proposed model can be em-
ployed for the real-time speech recognition with less than 10 million
parameters. Also, CLMs can handle OOV words by nature, which
is a great advantage for the end-to-end speech recognition and many
NLP tasks. One of the interesting future work is to train the clock
signals, instead of using manually designed ones.
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