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ABSTRACT

Robust and far-field speech recognition is critical to enable true
hands-free communication. In far-field conditions, signals are at-
tenuated due to distance. To improve robustness to loudness varia-
tion, we introduce a novel frontend called per-channel energy nor-
malization (PCEN). The key ingredient of PCEN is the use of an
automatic gain control based dynamic compression to replace the
widely used static (such as log or root) compression. We evalu-
ate PCEN on the keyword spotting task. On our large rerecorded
noisy and far-field eval sets, we show that PCEN significantly im-
proves recognition performance. Furthermore, we model PCEN as
neural network layers and optimize high-dimensional PCEN param-
eters jointly with the keyword spotting acoustic model. The trained
PCEN frontend demonstrates significant further improvements with-
out increasing model complexity or inference-time cost.

Index Terms— Keyword spotting, robust and far-field speech
recognition, automatic gain control, deep neural networks

1. INTRODUCTION

Speech has become a prevailing interface to enable human-computer
interaction, especially on mobile devices. An important component
of such an interface is the keyword spotting (KWS) system [1]. For
example, KWS is often used to wake up mobile devices or to initiate
conversational assistants. Therefore, reliably recognizing keywords,
regardless of the acoustic environment, is often a prerequisite for
effective interaction with speech-enabled products.

Thanks to the development of deep neural networks (DNN), au-
tomatic speech recognition (ASR) has dramatically improved in the
past few years [2]. However, while current ASR systems perform
well in relatively clean conditions, their robustness remains a major
challenge. This also applies to the KWS system [3]. The system
needs to be robust to not only various kinds of noise interference
but also varying loudness (or sound level). The capability to han-
dle loudness variation is important because it allows users to talk
to devices from a wide range of distances, enabling true hands-free
interaction.

Similar to modern ASR systems, our KWS system is also neural
network based [1, 4]. However, being a resource-limited embed-
ded system, the keyword recognizer has its own constraints. Most
importantly, it is expected to run on devices and is always listen-
ing, which demands small memory footprints and low power con-
sumption. Therefore, the size of the neural network needs to be
much smaller than those used in modern ASR systems [4, 5], im-
plying a network with a limited representation power. In addition,
on-device keyword spotting typically does not use sophisticated de-
coding schemes or language models [1]. These constraints motivate
us to rethink the design of the feature-extraction frontend.

In DNN-based acoustic modeling, perhaps the most widely
used frontend is the so-called log-mel frontend, consisting of mel-
filterbank energy extraction followed by log compression, where the
log compression is used to reduce the dynamic range of filterbank
energy. However, there are several issues with the log function.
First, a log has a singularity at 0. Common methods to deal with the
singularity are to use either a clipped log (i.e. log(max(offset, x)))
or a stabilized log (i.e. log(x+ offset)). However, the choice of the
offset in both methods is ad hoc and may have different performance
impacts on different signals. Second, the log function uses a lot
of its dynamic range on low level, such as silence, which is likely
the least informative part of the signal. Third, the log function is
loudness dependent. With different loudness, the log function can
produce different feature values even when the underlying signal
content (e.g. keywords) is the same, which introduces another fac-
tor of variation into training and inference. Although techniques
such as mean–variance normalization [6] and cepstral mean normal-
ization [7] can be used to alleviate this issue to some extent, it is
nontrivial to deal with time-varying loudness in an online fashion.

To remedy the above issues of log compression, we introduce a
new frontend called per-channel energy normalization (PCEN). Es-
sentially, PCEN implements a simple feed-forward automatic gain
control (AGC) [8, 9], which dynamically stabilizes signal levels.
Since all the PCEN operations are differentiable, we further pro-
pose to implement PCEN as neural network operations/layers and
jointly optimize various PCEN parameters with the KWS acoustic
model. Equipped with this trainable AGC-based frontend, the re-
sulting KWS system is found to be more robust to distant speech.

The rest of the paper is organized as follows. In Section 2, we
introduce and describe the PCEN frontend. In Section 3, we formu-
late PCEN as neural network layers and discuss the advantages of
the new formulation. In Section 4, we present experimental results.
The last section discusses and concludes this paper.

2. PER-CHANNEL ENERGY NORMALIZATION

In this section, we introduce the PCEN frontend as an alternative to
the log-mel frontend. The key component in PCEN is that it replaces
the static log (or root) compression by a dynamic compression de-
scribed below:

PCEN(t, f) =

(
E(t, f)

(ε+M(t, f))α
+ δ

)r
− δr, (1)

where t and f denote time and frequency index and E(t, f) denotes
filterbank energy in each time-frequency (T-F) bin. Although there is
no restriction on what filterbank to use, in this paper we use an FFT-
based mel filterbank for fair comparison with the log-mel frontend.
M(t, f) is a smoothed version of the filterbank energy E(t, f) and
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(a) log-mel frontend
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(b) PCEN frontend

Fig. 1. log-mel and PCEN features on a speech utterance.

is computed using a first-order infinite impulse response (IIR) filter,

M(t, f) = (1− s)M(t− 1, f) + sE(t, f), (2)

where s is the smoothing coefficient. ε is a small constant to pre-
vent division by zero. We arbitrarily chose 10−6 here and found
it does not have significant performance impact. Essentially, the
E(t, f)/(ε+M(t, f))α part implements a form of feed-forward
AGC [9]. The AGC strength (or gain normalization strength) is con-
trolled by the parameter α ∈ [0, 1], where larger α indicates stronger
gain normalization. Note that due to smoothing, M(t, f) mainly
carries the loudness profile of E(t, f), which is subsequently nor-
malized out. Also note that this operation is causal and is done for
each channel independently, making it suitable for real-time imple-
mentation. The AGC emphasizes changes relative to recent spectral
history and adapts to channel effects including loudness [8].

Following the AGC, we perform a stabilized root compression
to further reduce the dynamic range using offset δ and exponent r.
We note that the offset δ introduces a flat start to the stabilized root
compression curve, which resembles an optimized spectral subtrac-
tion curve [10]. It is worth noting that the main parameters in PCEN
are the AGC strength α and smoothing coefficient s, whose choices
depend on the loudness distribution of data.

Figure 1 compares the log-mel feature with PCEN feature on a
speech utterance, where log-mel uses stabilized log with offset =
0.1 and PCEN uses s = 0.025, α = 0.98, δ = 2 and r = 0.5.
Note that s = 0.025 translates to a 40-frame time constant for
the IIR smoother. We can see that similar to log-mel, PCEN re-
duces the dynamic range of filterbank energy while still preserv-
ing prominent speech patterns. However, note that in several in-
tervals (e.g. the first 30 frames and frame 120 to 170), low-level
signals that do not carry useful information are amplified by the
log operation, whereas in PCEN they are relatively flat. In addi-
tion, PCEN tends to enhance speech onsets, which are important
for noise and reverberation robustness. One way to understand the

KWS acoustic model

PCEN operations with trainable parameters

Uncompressed
filterbank energy Learned smoother

Smoother 1 Smoother 2 Smoother k

w1(f) w2(f) wk(f)· · ·

· · ·

Fig. 2. Schematic diagram of the trainable PCEN frontend. The
acoustic model and frontend are jointly trained using backpropaga-
tion.

onset enhancement effect is to rewrite E(t, f)/(ε+M(t, f))α as
exp
(
log(E(t, f))−α log(ε+M(t, f))

)
. That is, PCEN can be in-

terpreted as performing a partial log-domain high-pass filtering fol-
lowed by an exponential expansion, which helps enhance transitions.
This is similar to the RASTA filtering used for channel normaliza-
tion [11].

3. TRAINABLE PCEN FRONTEND

As can be seen in Equation 1, PCEN introduces several parameters.
These parameters need to be manually tuned, which is a labor in-
tensive and inherently suboptimal process. In some cases, manual
tuning can become impossible. For example, when one wants to
jointly tune all parameters with a moderate resolution, the number
of parameter combinations can easily explode. One of our original
motivations is to find a way to automatically optimize the various
PCEN parameters together, such that human efforts can be reduced.

Fortunately, all the PCEN operations are differentiable, permit-
ting gradient-based optimization w.r.t. hyperparameters. We first de-
scribe how to learn gain normalization related parameters α, δ and
r. With precomputed filterbank energy E and the corresponding
smoother M , PCEN can be easily expressed as matrix operations,
hence representable with standard neural network layers. Taking ad-
vantage of the modularity of the neural network, we can feed the
PCEN layer outputs as features to the original KWS acoustic model
and jointly optimize them. Given the KWS acoustic model loss func-
tion, we can use backpropagation to compute the gradient w.r.t. those
parameters and update them iteratively using stochastic gradient de-
scent (SGD). To ensure parameter positivity, we do gradient updates
on their log values and then take exponentials.

The neural-network formulation offers more than automatic pa-
rameter finding. In the standard PCEN formulation (Equation 1),
we restrict the parameters to be scalars shared across all T-F bins
and manually tune them, because it is difficult to design high-
dimensional parameters. With the neural-network-based formu-
lation, we can generalize PCEN parameters to be frequency- or
even time-frequency dependent and let SGD optimize their values
automatically.

We can extend this idea to learning the smoother M as well.
Specifically, we would like to learn the smoothing coefficient s,
which controls the time constant of the IIR smoother. One way to
achieve this would be to model the smoother as a recurrent neural
network with a trainable s. Another way is to predetermine several
smoothing coefficients and learn a weighted combination of several
smoother outputs. In this work, we choose the second method and
learn a frequency-dependent convex combination, i.e. (time index t
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is omitted here)

M(f) =

K∑
k=1

wk(f)Mk(f)

s.t. wk(f) ≥ 0 and
K∑
k=1

wk(f) = 1, (3)

where K is the number of smoothers. The constraints in Equation 3
can be satisfied by computingwk(f) as exp (zk(f)) /

∑
k exp (zk(f))

where zk(f) ∈ R. Similar to above, we can compute gradient w.r.t.
all zk(f) and update them iteratively.

Figure 2 illustrates the joint PCEN frontend and KWS model.
Here, we would like to point out an important design choice. In
our design, all the trainable parameters are data-independent, mean-
ing that they are not conditioned on any input features (that is, they
are the “leaf” nodes in the computation graph). After training, the
learned parameters are frozen and do not change for different signals.
This design choice avoids introducing additional network weights
and computational cost during inference, because we can simply
hardcode the trained parameters into the PCEN frontend. Although
it is entirely possible that data-dependent parameter learning can fur-
ther improve performance, it is important to strike a balance between
accuracy and resource usage for always-listening KWS.

4. EXPERIMENTS

4.1. Experimental setup

Our KWS system uses a convolutional neural network (CNN) [4].
The input to the CNN consists of 23 left context frames and 8 right
context frames (32 frames in total). For both log-mel and PCEN
frontend, each frame is computed based on a 40-channel mel filter-
bank with 25ms windowing and 10ms frame shift. The CNN con-
sists of a convolutional layer with 308 feature maps and 8 × 8 non-
overlapping kernels, followed by a linear projection layer of size 32
and a fully connected rectified linear unit layer of size 128. The
CNN is trained on large internal training sets to detect the keyword
“Ok Google”. The interested reader is referred to [1, 3, 4] for more
details such as decoding.

To improve noise robustness, we perform multi-condition train-
ing by artificially corrupting each utterance with various interfer-
ing background noises and reverberations, where the noise sources
contain sounds sampled from daily-life environments and YouTube
videos. To further improve loudness robustness, we also perform
multi-loudness training by scaling the loudness of each training ut-
terance to a randomly selected level ranging from −45 dBFS to
−15 dBFS. The far-field eval sets used in this paper are rerecorded
in real environments (such as a moving car or a living room). The
negative data in these sets mostly contain speech signals mined from
real voice search logs. The size of the eval sets ranges from about 50
to 300 hours. There is no overlapping condition between the training
and eval sets. All the data used are anonymized.

Our evaluation metric uses the receiver operating characteristic
(ROC) curve, plotting false rejection (FR) rates against false alarm
(FA) rates. Our goal is to achieve low FR rates while maintaining
extremely low FA rates (e.g. no more than 0.5 false alarms per hour
of audio).

4.2. PCEN vs. log-mel

We first present results comparing the log-mel frontend with the pro-
posed PCEN frontend. Note that we compare a log-mel frontend
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Fig. 3. ROC curve comparison between log-mel and PCEN on a
difficult far-field eval set. “MLT” stands for multi-loudness training.

containing an optimized spectral subtraction process (details omitted
here), which already outperforms the standard log-mel frontend. In
this experiment, PCEN uses a fixed set of scalar parameters, where
s = 0.025, α = 0.98, δ = 2 and r = 0.5. To better demonstrate the
gain normalization effect of PCEN, we compare both frontends with
and without multi-loudness training. Fig. 3 shows the ROC com-
parison on a rerecorded far-field car eval set. We can see that log-
mel without multi-loudness training performs the worst, and adding
loudness variations into training clearly helps log-mel. In contrast,
the proposed PCEN frontend significantly outperforms log-mel even
when it is not multi-loudness trained. For example, at 0.1 FA per
hour, PCEN reduces FR rate by about 14% absolute over log-mel
with multi-loudness training. Interestingly, PCEN with and without
multi-loudness training perform similarly to each other on this eval
set, which is likely due to the use of a high AGC strength α = 0.98.
Nevertheless, we find that multi-loudness training helps in general
and is needed for the trainable version of PCEN, hence the rest of
the experiments all use multi-loudness training.

We emphasize that multi-condition training on large amounts of
data is a very strong baseline, hence the obtained improvements are
quite significant. In addition, we have also compared with RASTA
filtering [11], a widely used channel normalization technique, but
found its performance to be inferior (not shown here).

4.3. Trainable PCEN

In this subsection, we compare fixed and trained PCEN. As men-
tioned above, in trainable PCEN, we generalize parameters to be
frequency-dependent and jointly optimize all of them, including
α(f), δ(f), r(f) and zk(f). Here, α(f), δ(f) and r(f) are ran-
domly initialized from a normal distribution with mean 1.0 and
standard deviation 0.1. zk(f) is randomly initialized from a normal
distribution with mean log(1/K) and standard deviation 0.1, where
K is the number of predetermined smoothers. In our preliminary
experiments, we computed 4 smoothers using smoothing coeffi-
cients of 0.015, 0.02, 0.04, and 0.08. We observed that the learned
weights are mostly assigned to the slowest and fastest smoothers
(that is, s = 0.015 and s = 0.08). Therefore, we use only those two
smoothers in the following experiments.

We note two training details. First, for effective training of
PCEN, we found that it is important to have multi-loudness train-
ing data, such that the network can learn the importance of gain nor-
malization. Furthermore, we found that it is helpful to bootstrap the
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(a) Noisy and far-field eval set (0.8m distance)
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(b) Noisy and far-field eval set (5m distance)
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(c) Clean and near-field eval set

Fig. 4. ROC curves of log-mel, fixed PCEN and trained PCEN. All
models are trained with multi-loudness data.

KWS CNN layers from a pretrained PCEN model.
Figure 4(a) and 4(b) show performance comparisons on two

rerecorded far-field eval sets, where the talking distances are 0.8m
and 5m, respectively. We can see that the trained PCEN consistently
outperforms fixed PCEN on both eval sets. Compared to the multi-
loudness trained log-mel, the improvements from trained PCEN are
quite significant, especially in low FA regions. An interesting ques-
tion is whether the proposed frontend would actually hurt the perfor-
mance in clean and near-field conditions. As can be seen in Fig. 4(c),
both fixed PCEN and trained PCEN outperform log-mel on a large
clean and near-field eval set.

4.4. Learned smoother combination weights

Figure 5 shows an example of the smoother combination weights
learned by the joint model. Interestingly, the learned weights show
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Fig. 5. Learned per-channel weights of a slow (s = 0.015) and fast
(s = 0.08) smoother.

an alternating pattern between frequency channels, where even-
numbered channels prefer to use the slower smoother (s = 0.015)
while odd-numbered channels the faster smoother (s = 0.08). We
suspect that this pattern is likely caused by the redundancy in filter-
bank energy from neighboring channels. The network basically tries
to alternate between different features to obtain more discriminative
information. This pattern could also be tied to the specific CNN ar-
chitecture used. In the future, we would like to design experiments
to better understand this phenomenon.

The architecture shown in Fig. 2 increases computational cost
because it needs to compute multiple smoothers first. In fact, the
alternating pattern can be utilized to reduce the cost. Inspired by
the spiky alternating weights, we trained a new model with a single
smoother but computed using alternating smoothing coefficients (the
other parameters are still learned as described before). As shown in
Fig. 4, the performance of the resulting model is actually very sim-
ilar to the full trained one. This result has an important implication
because it shows that we can achieve better performance without in-
creasing inference-time complexity.

5. DISCUSSIONS AND CONCLUSIONS

We have introduced a new robust frontend called PCEN, where the
key idea is to replace the static log (or root) compression by an AGC-
based dynamic compression. PCEN is conceptually simple, compu-
tationally cheap, and easy to implement. It significantly outperforms
the widely used log-mel frontend in noisy and far-field conditions.

We have also formulated PCEN as neural network layers. This
formulation not only allows us to perform end-to-end training but
also to generalize PCEN to have frequency- or time-frequency de-
pendent parameters. The resulting model provides significant further
improvements without increasing inference-time complexity.

To conclude, this work represents an effort to embed signal pro-
cessing components into a general-purpose neural network model,
where the signal processing components can be viewed as structural
regularizations. We think this is a promising future research direc-
tion.
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