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ABSTRACT

In this paper, we propose a neural network based distance metric
learning method for a better discrimination in the sequence-matching
based keyword search (KWS). In this technique, we conduct a ver-
sion of Dynamic Time Warping (DTW) based similarity search on
the speaker independent posteriorgram space. With this, we aim to
compensate for the scarcity of the resources and overcome the out-
of-vocabulary (OOV) term problem, which is one of the main is-
sues for KWS on low-resource languages. This distance measure
is then used in the DTW-based similarity search, as an alternative
and in comparison to the widely and generally used distance met-
rics. The experiments ran on IARPA Babel Program’s Turk-
ish search data show that, the proposed system outperforms the
baseline by 6.3% and when combined with the baseline system,
the improvement reaches 44.9%.

Index Terms— keyword search, spoken term detection, dis-
tance metric learning, low-resource languages, dynamic time warp-
ing

1. INTRODUCTION

The main focus of this paper is the keyword search task, also called
spoken term detection (STD), with a special focus on addressing the
problem of retrieving OOV terms. KWS is defined as the task of re-
trieving the occurrences of a keyword given by the user in text form,
in an audio archive. In contrast to keyword spotting [1], in KWS
keywords are known only when the user enters a query, possibly
resulting in OOV query words. This application has been becoming
increasingly interesting and prominent for military, intelligence and
civilian usage as the need of obtaining specific parts of an audio
archive grow, with the ever-increasing amount of untranscribed dig-
ital speech data. KWS can be applied in conference recordings,
telephone and radio conversations, audio/video lectures, broadcast
news and many other areas with speech data involvement [2, 3, 4].
The general and contemporary approach to KWS is to pass the au-
dio to a Large Vocabulary Speech Recognition (LVCSR) system and
to apply index search on the pre-indexed data [5, 6, 7]. However,
for low-resource languages, where limited or no transcribed data is
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available, the LVCSR systems have high word error rates and the
performances of the KWS systems that depend on them are limited
by imperfections of the LVCSR systems. Furthermore, for these
languages, most of the keywords fall out of the vocabulary of the
LVCSR systems, for which we can not obtain an LVCSR output
resulting in a low KWS performance for such terms.

Hence, in this paper, we will be addressing the OOV and low-
resource problem; proposing a methodology to overcome the short-
comings of LVCSR based KWS systems and introducing a KWS
system to perform instead of or in combination with them. The
work in [8] followed a similar goal to address the same problems
using point process models. Our proposed system is based on a
sequence-matching based methodology using a version of DTW,
called subsequence DTW (sDTW), inspired by query-by-example
spoken term detection (QbE-STD) tasks where the keyword is also
an audio snippet, by modeling the text query as a posteriorgram to be
used in frame level similarity search in the posteriorgram obtained
from the audio archive. In [9] and [10] we showed that the pseudo
query modeling and posteriorgram based KWS helps improve the
LVCSR based system performance and in [11] we analyzed the
effects of different query modeling techniques and different distance
measures used in frame-level similarity search.

The novelty of this paper is the introduction of a neural-network
based distance metric learning (DML) method to be used in frame-
level similarity search. We show that, when the new similarity
measure learned from a very little data used, the sequence-matching
based KWS outperforms the LVCSR based KWS by 6.3% and im-
proves the KWS performances by 44.9% when combined with the
LVCSR based system. In Section 2 we introduce the methodology
the sequence matching based search and then in Section 3 we pro-
vide mathematical background and training of the proposed DML
model. In Section 4 we present the experimental results, consisting
of the experiments on discriminative power of the new distance
model and the results of the KWS experiments conducted using the
model.

2. SEQUENCE MATCHING BASED KWS

Sequence matching has been used in early speech recognition sys-
tems [12], music retrieval (query by humming) [13] and QbE-STD
tasks [14, 15] using versions of DTW algorithms. In this work,
we use sDTW in which the keyword, henceforth called the query,
is compared with each subsequence of the audio utterance(s) dy-
namically and the subsequence(s) yielding an average distance value
lower than a given threshold is returned as a match. If we call the
query, Q = {q1, · · · ,qM} and the utterance X = {x1, · · · ,xN},
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sDTW dynamically finds the optimal alignment path betweenQ and
the most similar subsequence ofX denoted as Φ̂. Then, the detection
score of the search is decided from the accumulated distance through
the optimal path using a frame-level distance measure d(q,x).

score = 1− 1

length(Φ)

∑
(i,j)∈Φ

d(qi,xj) (1)

The flowchart of our sDTW based KWS system proposed in [10]
and also used in this work can be seen on Figure 1.

Fig. 1. Flowchart of the sDTW based KWS system

3. DISTANCE METRIC LEARNING

As can be seen in (1), the distance measure used between the frames
holds a significant importance on the detection score. Since the
phone posterior vectors are used as the representation of frames,
the most widely used distance metrics are cosine distance and loga-
rithmic cosine distance [16]. Both of these metrics, along with the
euclidean distance, use the inner-product of the two vectors as a sim-
ilarity measure and apply a kernel to convert it into a distance value.
The kernels applied to the inner-product similarity values, for vectors
with unit norms, can be seen on Figure 2 for euclidean (2), cosine
(3) and logarithmic cosine (4) distance measures.

deuc(x,y) =
√
‖x‖2 + ‖y‖2 − 2 < x,y > (2)

dcos(x,y) = 1− < x,y >

‖x‖‖y‖ (3)

dlog-cos(x,y) = −log(
< x,y >

‖x‖‖y‖ ) (4)

Although the above mentioned metrics are useful in certain
applications and provide mathematically valuable similarity val-
ues, none reflect the characteristics of the distribution of the data.
One very intuitive solution to this would be to use weighed inner-
products with covariances estimated from data, yet the question of
which dissimilarity kernel to use still remains. As a better distance
value we propose a neural network based model, similar to the
siamese networks used in signature [17] and face [18] verification
applications.

3.1. DML Neural Network Model

We propose the neural network based DML model in Figure 3, built
on the objectives of obtaining a better discrimination in frame level,
lower distance between examples of the same phone, higher distance

euclidean

cosine

log-cos

Fig. 2. Comparison on the kernel functions: It can be observed that
logarithmic cosine distance metric yields very high distance for low
similarities, in other words, it is less tolerant than euclidean to dis-
similar samples, i.e pronunciation variations.

between examples of different phones by incorporating phone con-
fusions into the distance value. We also aim to have the distance
value to be in [0, 1] such that the it can be interpreted as the prob-
abilities that two frames belong to the same phoneme or different
phonemes. We call the distance obtained from this network sigma
distance since sigmoid non-linearity is used to map the weighted
inner-product similarity to the desired range, with weights and the
bias learned in training. Here, we use the term distance metric for
our system loosely, since the output of the model does not satisfy
the axioms of metric spaces, yet it solely and successfully provides
a solution to our above stated objectives.

<h,g> f(x,y)

x 
h

σ!

b

y g

W

W

shared

Fig. 3. New distance value f(x,y) will be the output of this network

The input frames are projected onto a new space by W and the
new sigma distance will be obtained by

h = Wx g = Wy

f(x,y) = σ(< h,g > +b)

dσ(x,y) = 1− f(x,y)

(5)

where
σ(z) =

1

1 + e−z
(6)

3.2. DML Training

As can be seen on Figure 3, the network takes a pair of inputs and
emits a scalar distance value. So, we can consider the training set as
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triplets (xt,yt, rt) where rt is the label indicating the kinship of the
inputs xt and yt. For the sake of simplicity, we call the pairs (xt,yt)
friends if they belong to the same phone, and foes otherwise. Then,
as the labels rt, we use 1 for friends and 0 for foes, in other words

rt =

{
1, if class(xt) = class(yt)
0, if class(xt) 6= class(yt)

(7)

Clearly, for a training set of more than two classes, the size of the
foes class will be significantly larger than the size of friends. In
order to solve this problem, we separated the training dataset into
friends and foes. Then in each epoch, we trained the network using
the whole friends set in random order and a random subset of foes
with the size of the friends set. We also applied prior equalization
on the phoneme classes by taking the same number of samples from
each phoneme class into the distance learning training.

Since we have the objective of interpreting the system output as
a probability value, we used the cross-entropy (CE) objective func-
tion in the backpropagation. It can be considered as an objective of
increasing the likelihood of friends to output 1 and vice versa. The
objective function is then defined as:

JCE(W, b;xt,yt, rt) =

rtlog(f(xt,yt)) + (1− rt)log(1− f(xt,yt))
(8)

If we express f(xt,yt) as f for simplicity, the gradient with respect
to the parameters are found as follows:

4b =
dJ

db
=
dJ

df

df

dz

dz

db

= (
r − f

f(1− f)
)(f(1− f))(1) = r − f

(9)

and

4W =
dJ

dW
=
dJ

df

df

dz

dz

dW

= (
r − f

f(1− f)
)(f(1− f))(

d

dW
(xTWTWy))

= (r − f)W(xyT + yxT )
(10)

where z =< h,g > +b = xTWTWy + b.

With the gradients in hand and using learning rates µ and η, we
update the parameters with online gradient descent as,

W←W + µ4W and b← b+ η4b

The flowchart of the DML training is given in Figure 4.

4. EXPERIMENTAL RESULTS

The experiments for this work were conducted on two stages. First,
the discriminative power of sigma distance was measured on the
trained network and compared with other distance metrics. Then,
an sDTW based KWS was run using sigma distance for frame-level
similarity check and the results were compared with the baseline and
systems using other distance metrics.
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Fig. 4. Flowchart of DML Training

4.1. Datasets and System Set-up

In our system, we used IARPA Babel limited language pack (Lim-
itedLP) Turkish conversational telephone speech data (babel105b-
v0.4) [19]. Both the 10-hour training posteriorgram with its align-
ments and the 10-hour search posteriorgram was obtained using
Kaldi Speech Recognition Toolkit [20].

DML : In DML training, only a very little portion of the training
alignment is used. We used only 200 random frames per phoneme
class, from different speakers. When these frames are combined
into DML training pairs, a training set of approximately 36 million
pairs was obtained. As a preliminary set-up we used a square weight
matrix initialized with a uniform noise added identity matrix. For
validation, we used another random subset of the training data, con-
sisting of 100 random samples per phoneme, about 8.8 million pairs.

KWS : The search was conducted on the 88 OOV terms over
the 10-hour audio document. The text queries were modeled artifi-
cially as posteriorgrams using the average phone posterior-vectors
and average phone durations obtained from a subset of the training
data. This pseudo-query modeling was explained in [10].

4.2. Sigma Distance Discrimination Performance

To see the dicriminative power of the DML network, we observed the
statistics of the distances between friends and foes; and compared
them with the common distance metric measures. We have seen that
the Gini mean [21] of friends (mean of distances between friends -
also called the statistical dispersion) and the Gini mean of foes get
farther from each other with sigma distance. In other words, friends
get closer as foes get farther. This was one of our key goals for
achieving discrimination in detection. The normalized histograms of
the distances between friends and foes using different distance mea-
sures can be seen on Figure 5. We see that euclidean distance and
logarithmic cosine distance does not perform well on discrimination
of friends and foes. Histogram of cosine distance looks similar to
that of sigma distance, however, while in cosine distance the dis-
tance histogram of friends looks a flat, it decays as required in sigma
distance. The first and second order statistics of the dispersions can
be seen on Table 1.
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Fig. 5. Dispersion histograms: orange lines denote the histogram of
foes and the green lines denote friends.

DISTANCE/SUBSET friends foes
mean variance mean variance

euclidean 0.5930 0.0685 0.8603 0.0455
log-cos 1.2514 4.4896 7.6956 114.9505

cos 0.5130 0.1122 0.9123 0.0263
initial sigma 0.3313 0.0019 0.3714 0.0001

sigma (converged) 0.2760 0.0849 0.7559 0.0489

Table 1. Dispersion statistics of different distance metrics, initial
sigma is calculated with W = I and b = −0.5

4.3. KWS Experiments

4.3.1. Evaluation Metrics and the Baseline

As the evaluation metric, the maximum term weighted value
(MTWV) given in (11) is used. MTWV yields a performance
score based on a balanced evaluation between correct detections and
false alarms [22].

MTWV = 1− 1

|Q|
∑
q∈Q

Pmiss(q) + βPFA(q) (11)

Using the same threshold for all queries in set Q, Pmiss(q) and
PFA(q) denote the probabilities of miss and false alarm for query
q using the optimal threshold value. β is a constant deciding the cost
and award value between false alarms and correct hits. Given this
definition a system returning all queries with no false alarms will
yield a MTWV of 1. Similarly, a system with no outputs will yield
a 0 MTWV and hence it is possible to have negative MTWVs for
those systems having more false alarms than correct decisions. The
baseline system has an MTWV performance of 0.1887 and it uses
the LVSCR based Babel KWS setup in Kaldi toolkit [23, 24]. This
pipeline uses proxy keywords to handle OOV queries by searching
for acoustically similar in-vocabulary (IV) words instead of the OOV
keywords. The proxy keyword generation was introduced in [25]. A
similar approach based on confusion modeling was also proposed in
[26].

4.3.2. Sigma Distance used in KWS

The proposed sigma distance was used in the frame-level discrimi-
nation in the sDTW based search. Speech activity detection was ap-
plied to the audio posteriorgram using the phonetic posterior values,
and silence/non-speech parts having a posterior probability value of
0.5 or more were filtered-out. Also, a keyword specific detection
thresholding was applied on the system output by keeping detections
holding a score greater than 97% of the best scoring detection for
that keyword. It was observed that the common sum-to-one (STO)
normalization is more successful after this pruning. The sigma dis-
tance was compared with systems using different query modeling
techniques (binary vs average) and other commonly used distance
metrics (cosine vs logarithmic cosine) that were proposed in [11].
The experiments show that, as an individual system, the system us-
ing sigma distance is better than all systems using other distance
values and outperforms the baseline by 6.3%. When combined with
the baseline system, the improvement reaches 44.9%. The results of
individual systems and the merged systems can be seen on Figure 6.
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Fig. 6. Individual and merged systems MTWV results, base-
line (B), logarithmic cosine (distance)-average query (modeling)
(LA),logarithmic cosine-binary query (LB), cosine-average query
(CA), cosine-binary query (CB) and the new sigma distance which
uses average query.

5. CONCLUSION AND FURTHER WORK

We have seen that the the distance measure learned using the pro-
posed system, discriminates frames better than the common distance
metrics and can successfully be used in sDTW based KWS. Not only
does the new model provide a more discriminative means of frame
similarity comparison and project the phone confusions into the dis-
tance value, but also contributes to obtaining a better threshold value
to be used in KWS with its interpretable range in [0, 1]. It should
be noted that in this work, we simulated the low-resource set-up by
using very little (84 seconds) of the training data in DML. Learn-
ing may get better with more data. The aim of this work was to
address the OOV problem and we have seen this methodology im-
proves the LVCSR based system by 44.9% on OOV terms. The pro-
posed system ran on 219 IV terms has a similar performance to the
OOV MTWV (0.2066 vs 0.2006), a slight improvement due to the
usage of lexicon. As a future work, the deeper models can be trained
using additional hidden layers before or after the layer emitting the
posteriorgram space, in order to model non-linear dependencies be-
tween phonemes, or states. Similar to the work in [27] the distance
can be learned on non-linear functions between frames, or even se-
quences if we use recurrent nets.
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