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ABSTRACT

Proxy-word based out of vocabulary (OOV) keyword search has
been proven to be quite effective in keyword search. In proxy-word
based OOV keyword search, each OOV keyword is assigned several
proxies and detections of the proxies are regarded as detections of the
OOV keywords. However, the confidence scores of these detections
are still those of the proxies from lattices. To obtain a better con-
fidence measure, we employ an LSTM-CTC verification method in
this work and the confidence scores are regenerated. OOV keyword
search results on the evalpart1 dataset of the OpenKWS16 Evalua-
tion have shown consistent improvement and the maximum relative
improvement can reach 21.06% for the MWTW metric.

Index Terms— verification, proxy keyword, OOV keyword,
keyword search, CTC

1. INTRODUCTION

With the explosive increment of speech spreading on the Internet
and through the telephone, keyword search has been more and more
important nowadays. A typical keyword search system is based on
large vocabulary continuous speech recognition (LVCSR) systems.
First of all, LVCSR systems generate lattices for speech segments.
Then indexes are created from lattices. We can search keywords
directly in indexes. For LVCSR-based keyword search systems, lat-
tices are generated according to a fixed lexicon and none OOV words
will be recognized. Therefore, for LVCSR-based keyword search
systems, OOV keywords could never be retrieved.

To solve the problem of OOV keyword search, two strategies
can be adopted:

• Search OOV keywords via sub-word units such as phones,
syllables or word-fragments. Sub-word lattices can be gen-
erated by using sub-word lexicons together with sub-word
language models [1, 2, 3]. We can also convert word-level
lattices into sub-word lattices directly [4]. After we have sub-
word lattices, OOV keywords can be searched via sub-word
sequences.

• Inspired by query expansion in text retrieval [5, 6, 7, 8],
proxy words that are acoustically similar to OOV keywords
are searched in lattices instead of OOV keywords. In [9],
a phone confusion matrix has been employed for gener-
ating a list of likely-confusable proxy keywords from the
fixed lexicon. Proxy keywords are searched in the entire
lattices through a weighted finite state transducer (WFST)
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based framework and state-of-the-art performance has been
achieved.

Comparing the two methods, proxy-word based keyword search
could often lead to better performance because sub-word keyword
search trends to result in more false alarms. For proxy-word based
keyword search, stronger language constraint can be introduced in
the decoding phase by a word-level lexicon and a word-level lan-
guage model.

However, proxy-word based OOV keyword search doesn’t gen-
erate a new confidence measure for detections of the proxies. The
confidence scores of proxy-word detections are in fact the posterior
probabilities of the proxies rather than the OOV keywords them-
selves. The language model probability for OOV words can not
be estimated and that makes the posterior probabilities not accurate.
Some efforts have been made to get more approximate probabilities
for OOV keywords by removing the language model information. In
[9], experiments removing language model scores from lattices have
shown “negligible” improvement. In fact, both the language model
scores and the acoustic model scores of the proxies for OOV words
are not accurate. Therefore, to obtain a perfect confidence measure
for OOV keywords, all we need to do is to estimate the acoustic pos-
terior probability for each proxy-word detection.

In [10], we have proposed a novel LSTM-CTC keyword veri-
fication system for in vocabulary (IV) keyword search. Although
the scores output by the verification system is not a good confidence
measure as the posterior probability from lattices, it still can supply
some complementary and useful acoustic information. In this work,
we employed the verification system to assign every proxy-word de-
tection a new acoustic score. Results on the evalpart1 dataset of the
OpenKWS16 Evaluation have shown promising results.

In this paper, we briefly introduce the keyword search task and
metrics in Section 2. Section 3 is about the LSTM-CTC based key-
word verification method. Some basic environment setup is intro-
duced in Section 4. Verification results for proxy-word based OOV
keyword search and the discussions are presented in Section 5. Sec-
tion 6 is about the conclusions.

2. TASK AND METRICS

The task of keyword search defined by NIST for the OpenKWS16
Evaluation is to find all the exact matches of given queries in a cor-
pus of unsegmented speech data. A query, which can also be called
“keyword”, can be a sequence of one or more words. The result of
this task is a list of all the detections of keywords found by keyword
search systems. Each detection item in the list consists of the key-
word id, the utterance in which the detection is found, the start and
end time of the detection, and the confidence score.
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Fig. 1. The proxy-based OOV keyword verification system pipeline.

To evaluate the performance, term-weighted value (TWV) [11]
is adopted:

TWV (θ) = 1− 1

K

K∑

w=1

(
#miss(w, θ)

#ref(w)
+ β

#fa(w, θ)

T −#ref(w)
) (1)

where θ is the decision threshold, K is the number of keywords.
#miss(w, θ) is the number of true tokens of keyword w that are
missed at threshold θ, #fa(w, θ) is the number of false detections
of keyword w at threshold θ, #ref(w) is the number of reference
tokens of w, T is the total amount of the evaluated speech, β is a
constant set at 999.9.

As we can see, TWV is a function of the decision threshold θ.
A global threshold θ is used to make the hard decision whether a de-
tected keyword is correct. The TWV at the specified global thresh-
old is the actual TWV (ATWV). The optimal threshold results in the
maximum term-weighted value (MTWV).

3. LSTM-CTC BASED OOV KEYWORD VERIFICATION

After having the OOV detection list, we need to generate a new con-
fidence measure for proxy detections. In this work, we adopted the
LSTM-CTC verification system proposed in [10]. The verification
system is in fact a universal acoustic model. The verification pro-
cedure is to align feature segments to the corresponding character
sequences and the posterior probability is taken as the verification
score. The verification system pipeline is illustrated in Fig. 1.

Connectionist temporal classification (CTC) [12] has been
proven to be very suitable for labeling such unsegmented sequence
data. Given a input feature sequence X of length T and its character
sequence W , CTC is an objective function defined below:

LCTC(X,W ) =
∑

CW

p(C|X) =
∑

CW

T∏

t=1

p(ct|X), (2)

where CW is any label sequence of length T corresponding to the
correct character sequence W . By summing up over all sets of label
locations that yield the same label sequence W , CTC determines a
probability distribution over possible labelings, conditioned on the
input sequence X.
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Fig. 2. The LSTM-CTC verification: training and testing phases.

The long short-term memory (LSTM) neural network [13] has
been demonstrated to be very effective to deal with sequence label-
ing problems. For our verification system, we put a CTC layer on
top of an LSTM neural network trained directly using the original
speech feature.

In the training phase, word samples are fed into a multi-layer
LSTM neural network using the CTC criterion. To prepare word
samples from utterances, the LVCSR system is employed to align
utterance-level transcriptions to word-level transcriptions. In the
testing phase, proxy detections for OOV keywords are fed into the
LSTM neural network and the verification scores are output. The
LSTM-CTC verification system is illustrated in Fig. 2.

In fact, the CTC verification scores are also acoustic scores and
are similar to acoustic likelihoods in LVCSR systems. The differ-
ence between the two scores lies in :

• The CTC score is trained on character level and no pronun-
ciation lexicon is needed. The acoustic likelihood is often
trained on phoneme level or more precisely on state level.
Because of the nature of the CTC criterion, no alignment for
every frame is needed in the training phase for CTC scores.

• The acoustic likelihood is only the likelihood of the most pos-
sible label sequence, while the CTC score is the posterior
probability summation over all possible label sequences. That
makes the CTC score more approximate to the true acoustic
posterior probability.

• The aim of our verification system is to verify the correctness
of the detection segment, not the whole utterance. That makes
it more focused on the internal properties in individual words
and less impacted by the context.

In one word, the verification system focuses on verifying
whether a feature segment is corresponding to the specified label
sequence. The verification system is quite easy to build and very
flexible.

4. EXPERIMENTS SETUP

4.1. The LVCSR system setup

All the OOV keyword search experiments were conducted on the
evalpart1 dataset of the OpenKWS16 Georgia Evaluation. The
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acoustic model was a subspace GMM (SGMM) [14] based model
trained using the full language pack (FullLP). The FullLP consists
of 80 hours of conversational speech, of which 50% is transcribed.
Only the 40 hours’ transcribed speech from the FullLP was used.
Besides, we used multilingual bottleneck (MBN) features [15, 16]
for building the LVCSR system. The MBN features were trained us-
ing 8 Babel languages including 102 the Assamese, 201 the Creole,
202 the Swahili, 206 the Zulu, 305 the Guarani, 306 the Igbo, 307
the Amharic and 403 the Dholou.

A trigram language model was trained using transcriptions of the
FullLP together with some selected web text data. To obtain better
performance, the acoustic model was enhanced using the boosted
maximum mutual information (BMMI) criterion [14]. There is also
a tuning dataset consisting of 3 hours of transcribed speech for the
OpenKWS16 Evaluation. We used the tuning dataset for parameter
tuning.

4.2. OOV keyword search setup

We used the babel404b-v1.0a convevalpart1.annot.kwlist3.xml, the
keyword list provided by NIST for the OpenKWS16 Evaluation.
There are 4469 keywords in the keyword list, of which 554 are OOV
keywords in our LVCSR system. To handle the OOV keywords, we
employed the proxy-word based OOV keyword search in [9]. First of
all, the phone confusion matrix was trained using the tuning dataset.
Then for each OOV keyword, 500 proxy words in the vocabulary
were generated. For shorter keywords often resulting in a lot of false
alarms, we ignored the OOV keywords with less than 5 phones. This
set of parameters of proxies is denoted as “Proxy baseline”. The ex-
periment removing the language model scores in lattices is denoted
as “Proxy no LM” .

Besides, to obtain state-of-the-art keyword search performance,
all the TWV results reported in this work have been normalized
using the keyword specific threshold (KST) normalization method
[17].

4.3. The LSTM-CTC verification system setup

To train the LSTM-CTC verification system, we aligned the utterance-
level transcriptions of the FullLP to word-level transcriptions using
our LVCSR system first. Then we split every utterance into indi-
vidual words and 252535 samples can be obtained. We adopted a
character-level LSTM-CTC verification system using the 252535
samples. In total, there are 33 different characters for Georgia.
The verification system was trained to align the MBN features of
every word sample to their corresponding character sequences using
the CTC objective function. The LSTM neural network was a bi-
directional neural network, which consisted of 4 hidden layers and
each layer had 320 forward memory cells and 320 backward mem-
ory cells. The tuning dataset was also split into individual words and
24891 samples were obtained for validation.

In [10], we have also proposed three normalization methods for
normalizing the verification score. We denote the original verifi-
cation score output by the verification system as s, then the three
normalization methods can be written as below:

sword = s(1/#words), (3)

schar = s(1/#characters), (4)

sframe = s(1/#frames). (5)

#words is the number of words in the keyword. #characters is
the number of characters in the keyword. #frames is the number

of frames where the detection lasts. For longer keywords trending
to get relatively low scores in the verification system, the three nor-
malization methods try to eliminate the effect of different lengths of
keywords.

In our experiments, we denote the original verification exper-
iment as “Ver”, the word-level normalization as “Ver word”, the
character-level normalization as “Ver char” and the frame-level nor-
malization as “Ver frame”.

In addition, we have also trained a contrastive LSTM-CTC sys-
tem using utterances as training samples. The same normalization
methods have also been adopted. We denote the verification system
trained using utterance samples as “Ver utt”, the word-level normal-
ization version as “Ver utt word”, the character-level normalization
version as “Ver utt char”, the frame-level normalization version as
“Ver utt frame”.

5. EXPERIMENT RESULTS AND DISCUSSIONS

5.1. Results for the verification system

The proxy-word based OOV keyword search was conducted on the
OpenKWS16 Evaluation evalpart1 dataset. Then the verification
system was employed to verify every detection of the proxy key-
words. Results of our verification system is listed in Table 1.

Table 1. Verification results for proxy-word based OOV keyword
search

ATWV MTWV Imp.(MTWV)

Proxy baseline 0.3005 0.3048 -

Proxy no LM 0.3033 0.3113 2.13%
V er 0.3146 0.3254 6.76%

V er word 0.3146 0.3254 6.76%
V er char 0.3368 0.3448 13.12%
V er frame 0.3100 0.3282 7.68%
V er utt 0.2350 0.2386 −21.72%

V er utt word 0.2346 0.2350 −22.90%
V er utt char 0.2691 0.2828 −7.22%
V er utt frame 0.2703 0.2843 −6.73%

From the results, we can see that proxy-word based keyword
search has shown excellent performance. Removing language model
scores from lattices brings a little improvement for both the ATWV
and MTWV metric. It proves that wrong language model informa-
tion has negative influence on calculating the confidence measure for
proxies of OOV keywords.

Even by employing the original verification scores, the relative
improvement of MTWV can reach 6.76%, much bigger than that of
removing language model scores (2.13%). Normalization accord-
ing to the keyword length has brought consistent improvement over
the plain CTC score. Normalizing the verification score using the
character length shows the biggest improvement of 13.12%.

In fact, removing the language model scores from lattices is not
a very reasonable method for calibrating the confidence measure
of OOV keyword detections. Because for IV words, the language
model information is still very necessary for calculating the posterior
probability in lattices. Therefore, assigning every proxy detection a
new acoustic confidence measure is a better choice.

The reason why our verification system works is that the ver-
ification system generates discriminative scores of aligning feature
segments to the corresponding character sequences directly. From
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the results, we can also conclude that normalizing is essential for
the verification procedure. Among the three normalization methods,
the character-level normalization worked best because our verifica-
tion system was trained on character sequences. The character-level
normalization tries to evaluate the average correctness for each char-
acter component in keywords.

The verification system trained using utterance samples instead
of individual word samples has led to much performance decrease.
The reason is that training using utterances has to dealing with much
longer char sequences, which consists of transitions across words
and makes the training procedure more difficult.

5.2. Verification results with different numbers of proxies

Some more experiments have been done to explore the potential of
proxy-based OOV keyword search with different numbers of proxies
for each OOV keyword. The result are presented in Table 2.

Table 2. OOV keyword search performance with different numbers
of proxies

Number of proxies ATWV MTWV

100 0.2871 0.2922
200 0.2795 0.2813
300 0.2877 0.2904
400 0.3070 0.3087
500 0.3005 0.3048
1000 0.2855 0.2950
1500 0.2861 0.2944
2000 0.2886 0.2981
2500 0.3020 0.3120
3000 0.3073 0.3147
4000 0.3113 0.3188

From the results in Table 2, we can see that better performance
of OOV keyword search can be obtained by increasing the num-
ber of proxies. However, generating more than 400 proxies doesn’t
bring much improvement over that of 400 proxies. The reason is that
false alarms increase rather quickly as the number of proxy words in-
creases. For proxy-based OOV keyword search with different num-
bers of proxies, verification experiments have also been conducted
and the results are in Fig. 3.
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Fig. 3. Verification results with different numbers of proxies.

The “char normalization” in Fig. 3 refers to the character-level
normalization. The results indicate that our verification system can

improve the performance of proxy-based OOV keyword search for
different numbers of proxies consistently, especially when using the
character-level normalized CTC verification scores. The biggest rel-
ative improvement of MTWV can reach 21.06% where the number
of proxy words is 2500.

Besides, much more absolute MTWV improvement has been
observed as the number of proxies increases. For example, the ab-
solute MTWV gain is 0.062 where the number of proxies is 4000,
while it is only 0.0039 where the number of proxies is 100. That
means our verification system has provided much better confidence
measure and the confidence measure helps a lot to distinguish true
hits from false alarm.

5.3. Verification results for proxies with different cutoff lengths

In the previous proxy-based keyword search, proxies for OOV key-
words with less than 5 phones were ignored to avoid a number of
false alarms. Experiment results with “proxy cutoff” at different
lengths of phones in keywords are presented in Table 3.

Table 3. Verification results of MTWV with different cutoff lengths.

Length Baseline Verification

4 0.3184 0.3808
5 0.3188 0.3808
6 0.3204 0.3766
7 0.2940 0.3241

“Verification” in Table 3 refers to the LSTM-CTC verification
results with character-level normalization, while “Baseline” refers
to the plain proxy-based keyword search. The minimum number
of phones in keywords is 4 (only one keyword has the length of 3
phones). So the cutoff length is set varying from 4 to 7. With bigger
cutoff length, a little improvement is obtained from 4 to 6 for “Base-
line”. Using the verification system, we can see that a smaller cutoff
can get better MTWV. This phenomenon indicates that our verifi-
cation system generates a better confidence measure, even for short
OOV keyword proxies.

Considering that the minimum number of phones is 4, the veri-
fication performance for OOV keywords with less phones ( e.g. 2 or
3 ) should be checked.

6. CONCLUSIONS

In this article, we have proposed an LSTM-CTC based verifica-
tion system for proxy-based OOV keyword search. The verifica-
tion method trained a character-level LSTM-CTC neural network
and tried to align feature segments to their corresponding charac-
ter sequences. Using the verification scores normalized by the char-
acter length, we can obtain quite a lot of improvement consistently
over the plain proxy-based OOV keyword search. For proxy con-
ditions resulting in much more false alarms, the verification system
can achieve even bigger gains and shows strong robustness.
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