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ABSTRACT 
 

Training a bottleneck feature (BNF) extractor with multilingual 

data has been common in low resource keyword search. In a low 

resource application, the amount of transcribed target language 

data is limited while there are usually plenty of multilingual data. 

In this paper, we investigated two methods to train efficient 

multilingual BNF extractors for low resource keyword search. One 

method is to use the target language data to update an existing 

BNF extractor, and another method is to combine the target 

language data to train a new multilingual BNF extractor from the 

start. In these two methods, we proposed to use long short-term 

memory recurrent neural network based language identification to 

select utterances in the multilingual training data that are 

acoustically close to the target language. Experiments on Swahili 

in the OpenKWS15 data demonstrated the efficiency of our 

proposed methods. The first method facilitates rapid system 

development, while both methods outperform using baseline BNF 

extractors in terms of accuracy. 

Index Terms—Keyword spotting, multilingual data 

selection, recurrent neural network, language identification 
 

1. INTRODUCTION 
 

In recent years, low resource keyword search (KWS) has gained 

much attention from researchers. Due to limitations of keyword-

filler based KWS systems [1,2], such as high false alarm rates 

when large numbers of keywords or keyword phrases are involved, 

most state-of-the-art KWS systems are based on large vocabulary 

continuous speech recognition (LVCSR) [3-12]. 

Building state-of-the-art LVCSR systems requires large 

amounts of transcribed speech and linguistic knowledge of target 

languages. It is difficult and time-consuming to acquire these 

resources for some languages, especially for low resource 

languages. To overcome this limitation and improve the 

performance of KWS, researchers have proposed different methods 

for using the transcribed data from other languages to help to build 

acoustic models or feature extractors for low resource languages 

[13-23]. One method is to build multilingual DNN-HMM hybrid 

systems. Multilingual deep neural network (DNN) based cross-

lingual knowledge transfer, as an effective method for transferring 

knowledge across languages, has attracted broad attention 

[13,15,17,18,21,22]. Another commonly used method is to extract 

bottleneck features from a multilingual DNN [14,16,19,20,23], and 

then the extracted features are used to train a GMM-HMM or 

DNN-HMM recognizer. Some studies have shown that 

multilingual deep bottleneck features are more efficient than 

multilingual DNN based cross-lingual knowledge transfer [24,25]. 

There have also been some studies shown that not all multilingual 

data can contribute equally to the KWS performance of target 

languages when using multilingual data to train bottleneck feature 

extractors or DNN-HMM hybrid systems for cross-lingual 

knowledge transfer [13, 26]. Thus, it is better to select subsets of 

multilingual data for building efficient multilingual DNN models 

or bottleneck feature extractors for target languages. 

In this paper, we investigate two methods to build efficient 

multilingual BNF extractors for KWS of a low resource target 

language. In these two methods, we use long short-term memory 

(LSTM) recurrent neural network (RNN) based language 

identification (LID) to select utterances in the multilingual training 

data that are acoustically close to the target language. The first 

method is to use these two sets of data to update an existing BNF 

extractor, and the second method is to combine the target language 

data and the selected multilingual data to train a new multilingual 

BNF extractor from the start. These two methods are aimed at 

reducing the amount of multilingual data used for training, and 

thus reducing the time taken to build new multilingual BNF 

extractors for the target language. To our knowledge, these two 

methods have never been compared. 

Note that Zhang et al. and Chuangsuwanich et al. have 

proposed to use LID for multilingual data selection [13, 25]. 

However, our present work differs from this work in the following 

aspects: (1) While [13,25] only consider to train a multilingual 

BNF extractor from the start, our work also considers updating an 

existing multilingual BNF extractor using the selected data. We 

will demonstrate that rapidly updating an existing BNF extractor 

can have comparable performance to a new BNF extractor built 

from scratch. (2) [13,25] do not consider including target language 

data when training a multilingual BNF extractor. In addition to 

selecting multilingual data based on LID, it is worth noting that our 

previous work [26] considers updating a shared-hidden-layers 

multilingual DNN hybrid system with the multilingual data section 

using a submodular method with term frequency-inverse document 

frequency of frame based Gaussian component index [8,11,12]. 

The rest of the paper is organized as follows. A multilingual 

data selection method by using long short-term memory recurrent 

neural network based language identification is presented in 

Section 2. In Section 3, methods for building multilingual deep 

bottleneck extractors are introduced. The experimental setup, 

results and analysis are presented in details in Section 4. Section 5 

concludes the paper.  
 

2. MUTLTILINGUAL DATA SELECTION USING LONG 

SHORT-TERM MEMORY RECURRENT NEURAL 

NETWORK BASED LANGUAGE IDENTIFICATION 
 

Long short-term memory (LSTM) recurrent neural network (RNN) 

has been applied to language identification (LID), and has obtained 

state-of-the-art performance probably due to its more sophisticated 

modeling of long-term information in speech [27]. In this paper, 

we propose to use LSTM RNN to select the utterances in the 

multilingual training data that are misclassified into the target 

language with high probability, to train BNF extractors. The reason 

for this is that if an utterance in a language has high probability to 

be misclassified into another language, it is reasonable to say that 
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these two languages are similar. Being similar is possibly due to 

the effect from recording environments or/and speaker 

characteristics. 

When building an LSTM RNN model for LID, we define 

    unique frame labels, where   is the number of languages 

(including the target language). For each language, the speech 

frames of the utterances are labeled using the language identity 

index. An extra label is used to represent silence frames of 

utterances in all languages. Let   be the set of utterances,   
(          )  be an input utterance feature,  (    )  

( (     )  (     )    (     )) be the posterior vector for input 

feature    at frame  , where  (     ) is the posterior of language    
for input feature   ,    is the silence output target index, a function 

can be defined as follows: 

 ( )  ∑    (      (
 

 ( )
∑  (    

 ) 
   ))             (1) 

where  ( ) is the number of frames of utterance  ,   
  is the tth 

input feature of the input utterance  ,       ( ) is the projection 

function in order to get the    component for a vector, and    is the 

target language index. In order to reduce frame level 

misclassification, the posterior probability is averaged for each 

utterance. When using Eq. (1) for multilingual data selection, the 

utterances with high misclassification probability values are 

selected. 
 

3. METHODS TO BUILD MULTILINGUAL DEEP 

BOTTLENECK EXTRACTORS 
 

A shared-hidden-layer multilingual deep neural network (SHL-

MDNN) [18] is used as a feature extractor in this paper. The 

extracted BNFs are then used to train a GMM-HMM or DNN-

HMM recognizer. In this multilingual network, hidden layers are 

shared across many languages while the softmax layers are 

language dependent. An internal bottleneck layer is used to extract 

multilingual BNFs, which carry information for phonetic 

discrimination in multiple source languages. This BNF extractor 

facilitates the use of resources from other languages. Multilingual 

training data are selected according to the average misclassification 

posterior probability at utterance level according to Eq. (1).  

Note that we need to consider the number of source languages 

involved in these selected utterances. More selected source 

languages increase the size of the output senone layer, which 

increases the time taken to train the multilingual BNF extractor. 

For convenience, we filter out some source languages in which not 

many utterances are selected. After that, we can update an existing 

BNF extractor, or train a new multilingual BNF extractor from the 

start, together with the target language data. 
 

3.1 Rapid update of existing multilingual BNF extractors 
 

The performance of KWS can be improved by updating an existing 

multilingual hybrid DNN for a target language. Due to the limited 

amount of the target language data, only the new softmax layer 

(output nodes in the new softmax layer corresponding to the 

senones created for the target language) is trained while the 

parameters in the shared hidden layers are fixed. Our work in [26] 

shows that the system improvement is not satisfactory when this 

multilingual network is used for acoustic modeling. To further 

improve the system, a small amount of multilingual data, which is 

acoustically close to the target language, is selected and used 

together with the target language data to update the parameters in 

the existing multilingual network. 

This motivates us to update an existing multilingual BNF 

extractor for a new target language. In this paper, we also consider 

the situation that more data from different languages are available 

when a new target language is identified, and a multilingual BNF 

extractor is readily available before the target language is 

identified. When updating an existing MDNN, a weighted cross-

entropy criterion is used in [26]. A higher weight is used to 

emphasize the target language. In this paper, we also tried a higher 

weight to emphasize the target language in the weighted cross-

entropy criterion in the training of multilingual BNF extractors, but 

no significant gain was observed, so equal weighting is used in this 

work. We believe that the weighting used in training a BNF 

extractor is not as sensitive as that used in training a hybrid DNN-

HMM for acoustic modeling [26]. 
 

3.2 Training from scratch with selected multilingual data 
 

The first method is not optimized for the target language because: 

(1) the training data used for training an existing BNF extractor 

may not contribute (or even hurt) the performance for the target 

language; and (2) it is difficult to efficiently adapt an existing BNF 

(trained by lots of multilingual data) with a small amount of target 

language data. An intuitive idea is to train a new multilingual BNF 

extractor from the start together with the target language data. 

Previous research has demonstrated that not all multilingual 

data can contribute equally to the final KWS performance for the 

target language [13, 26], and the utterances that are acoustically 

similar to the target language, are more useful for building a 

multilingual BNF extractor for the target language. Therefore, 

similar to [13, 25], in this paper, when building the BNF extractor 

from the start, we proposed to use the LSTM RNN LID-based 

multilingual data selection method to select utterances from 

different languages for building an efficient multilingual BNF 

extractor. Since the target language data should be the most 

efficient data to train the BNF extractor for the target language, we 

consider including the target language data in the training 

procedure. Equal weight is used in cross-entropy criterion to build 

the multilingual BNF extractor. 
 

4. EXPERIMENTS 
 

4.1. Experimental setup 
 

The OpenKWS15 Swahili data provided by the IARPA Babel 

program as the target language was used in the experiments. The 

other languages, a total of 23 languages, released by the IARPA 

Babel program in three stages were also used in our experiments 

for language identification model training and cross-lingual 

transfer. 

In the data of each language, there are three different 

conditions, including full language pack (FLP), limited language 

pack (LLP), and very limited language pack (VLLP), which 

correspond to different training data sets: 

FLP: 60-170 hours of transcribed speech, depending on 

which phase of the Babel program the data was designed for, and 

the corresponding FLP pronunciation lexicon. 

LLP: a subset of 10 hours of transcribed speech in FLP, and 

the corresponding LLP pronunciation lexicon. 

VLLP: a subset of 3 hours of transcribed speech in FLP. 

A number of data sets used for training monolingual or 

multilingual BNF extractors in our experiments were described as 

follows: 

VLLP-TL: the 3 hours of target language data in VLLP. 
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Baseline-Multilingual-509h: 509 hours (Cantonese: 175.2 

hours, Pashto: 111.1 hours, Turkish: 107.4 hours, Tagalog: 115.7 

hours) of data randomly selected from FLP of 4 languages. We 

assume that a multilingual BNF extractor built using this set of 

data is available before the target language is identified. 

Baseline-Multilingual-14h-LID: 14 hours (3.5 hours from 

each language) of data selected from “Baseline-Multilingual-

509h”, have the highest misclassification probabilities defined 

according to (1) in each language. 

Baseline-Multilingual-14h-Sub: 14 hours (3.5 hours from 

each language) of data selected from “Baseline-Multilingual-509h” 

using our previously proposed submodular method in [26]. 

Proposed-Multilingual-96h: 96 hours of data (Haitian Creole: 

29.7 hours, Zulu: 21.6 hours, Dholuo: 23.9 hours, Vietnamese: 

20.7 hours) selected by our proposed LID based data selection 

method, which have the highest misclassification probabilities 

defined according to (1). 

Proposed-Multilingual-14h: 14 hours (3.5 hours from each 

language) of data selected from “Proposed-Multilingual-96h”, 

which have the highest misclassification probabilities defined 

according to (1) in each language. 

Creole-14h: 14 hours of Haitian Creole data selected from 

“Proposed-Multilingual-96h”, which have the highest 

misclassification probabilities defined according to (1). 

Submodular-Multilingual-96h: 96 hours of data (Zulu: 20.1 

hours, Pashto: 35.0 hours, Vietnamese: 27.6 hours, Cantonese: 

13.3 hours) selected using our previously proposed submodular 

method in [26]. 

In order to fairly compare with the baseline multilingual data 

set, we constrain only four languages of data to be selected when 

using LID or submodular method to select utterances.  

The web text data of the target language provided by the 

IARPA Babel program was also used to train a 3-gram language 

model. The web text based LM was interpolated with the 3-gram 

LM trained by using the VLLP training transcription. The 

interpolation weight was optimized by minimizing the perplexity 

on the transcription of 10 hours of development set Dev10h. The 

interpolated LM is denoted as “Web-data LM”. The VLLP training 

transcription based LM is denoted as “Training transcription LM”.  

To evaluate our proposed methods, we built different KWS 

systems. When building these KWS systems, the Kaldi toolkit and 

corresponding KWS recipe with the same settings were used in 

order to fairly compare the performance of different KWS systems 

[28]. The features used for training a monolingual BNF extractor 

or multilingual BNF extractor are 22 fbank features and 3 Kaldi 

pitch related features and their delta and delta-delta features 

(fbank+pitch+∆+∆∆). After extracting 42 BNF features, they were 

concatenated with the 75 fbank+pitch+∆+∆∆ features, and then 

117 fbank+pitch+∆+∆∆+BNF features were obtained. These 

features were used in the training of a target language hybrid DNN 

(6 hidden layers, 1,024 hidden units for each hidden layer). It is 

first trained based on cross-entropy criterion, and then based on 

sMBR criterion for sequence training. The alignments used for 

training hybrid DNN model were generated by a discriminative 

trained GMM-HMM system. The number of senones of the target 

language is 2,027. Only the cross-entropy criterion was used for 

multilingual deep bottleneck extractor (6 hidden layers, except the 

bottleneck layer includes 42 hidden units, other hidden layers 

include 1500 hidden units) training.  

The keyword list provided for OpenKWS15, which contains 

4,454 keywords or keyword phrases, was used to evaluate different 

keyword search systems. All KWS systems are word based KWS 

systems. When “Web-data LM” is used for ASR decoding, the 

number of out-of-vocabulary (OOV) keywords or keyword phrases 

is 260. When using “Training transcription LM” for ASR 

decoding, the number of OOV keywords or keyword phrases is 

2,667. The actual term weighted value (ATWV) and word error 

rate (WER) were used to measure the performance of KWS 

systems and the underlying ASR systems. The 15 hours of 

evaluation part 1 Evalpart1 was used for our evaluation.  
 

4.2 Experimental results 
 

In general, the web-data LM improved the performance of all 

KWS systems and their underlying ASR systems and we observed 

that if a system performs well with the web-data LM, it also 

performs well with training transcription LM. Table 1 lists the 

performance of different baseline keyword search systems. From 

Table 1, we can see that the baseline multilingual BNFs provide a 

17.5% relative ATWV improvement compared with the 

monolingual BNFs when “Web-data LM” is used. Though the 

baseline multilingual BNFs improved the KWS performance, it 

could be improved further if the multilingual BNF extractor was 

trained using more data that were acoustically close to the target 

language. 

 

Table 1. Performance of baseline KWS systems on Evalpart1. 

BNF extractor 
Data set for 

training BNF 
extractor 

Web-data LM 
Training 

transcription LM 
WER ATWV WER ATWV 

Baseline 
Monolingual 

VLLP-TL 67.4 0.308 69.3 0.194 

Baseline 
Multilingual 

Baseline-
Multilingual-509h 

64.5 0.361 69.0 0.216 

 

Table 2 shows the performance on Evalpart1 when different 

data sets were used to rapidly update the baseline multilingual 

BNF extractor.  

 

Table 2. The performance of different KWS systems on 

Evalpart1 by rapidly updating the baseline multilingual BNF 

extractor using 17 hours of multilingual data. 

BNF 
extractor 

Data set for updating BNF 
extractor 

Web-data LM 
Training 

transcription LM 

WER ATWV WER ATWV 

R1  
Baseline-Multilingual-14h-

LID + VLLP-TL 
62.1 0.396 66.7 0.239 

R2 
Baseline-Multilingual-14h-

Sub + VLLP-TL 
62.3 0.390 67.1 0.238 

R3 
Proposed-Multilingual-14h 

+ VLLP-TL 
61.4 0.397 66.0 0.242 

R4 Creole-14h +  VLLP-TL 61.6 0.389 66.3 0.231 

 

As the target language data is the most efficient data for 

building a multilingual BNF extractor targeted for the target 

language, the target language data was always included to rapidly 

update the baseline multilingual BNF extractor. We observed that: 

(1) Updating an existing BNF extractor provided significant 

improvement. Comparing with the baseline multilingual BNFs, 

relative ATWV improvements between 7.8% and 10.0% were 

obtained when “Web-data LM” was used. Comparing the baseline 

multilingual BNF extractor and extractor R1 further confirms that 

not all multilingual data contribute to the performance and the 

performance improvement could be achieved while less than 3% of 

data in "Baseline-Multilingual-509h" was used in the update. This 
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kind of method is particularly suitable to the situation when rapid 

system development is needed. (2) The kind of method worked 

well even if a new set of multilingual data was involved to update a 

readily available multilingual BNF extractor (as shown in R3). (3) 

The utterances selected by our proposed LID based method 

showed slightly better performance by comparing R1 and R2. (4) 

Selecting utterances from more languages (R3) provided slightly 

better performance than selecting the same amount of utterances 

from one language (R4). 

 

Table 3. The performance of different KWS systems on 

Evalpart1 by training multilingual BNF extractors from the 

start. 

BNF 
extractor 

Data set for training BNF 
extractor 

Web-data LM 
Training 

transcription LM 
WER ATWV WER ATWV 

S1 
Baseline-Multilingual-509h 

+ VLLP-TL 
61.2 0.413 65.7 0.243 

S2 Proposed-Multilingual-96h 60.9 0.407 65.6 0.239 

S3 
Proposed-Multilingual-96h 

+ VLLP-TL 
60.7 0.416 65.6 0.244 

S4 
Submodular-Multilingual-

96h 
61.3 0.399 65.8 0.237 

S5 
Submodular-Multilingual-

96h + VLLP-TL  
61.1 0.402 65.7 0.237 

S6 Creole-14h + VLLP-TL 65.1 0.372 69.5 0.221 

 

Table 3 shows the performance on Evalpart1 when different 

data sets were used to train a new multilingual BNF extractor from 

scratch. We observed that: (1) Training a new BNF extractor with 

our proposed data selection method (S2 and S3) provided 

significant improvement. Comparing with the baseline multilingual 

BNFs, relative ATWV improvements between 3.0% and 15.2% 

were obtained when “Web-data LM” was used. Moreover, 

although less than 20% of data in “Baseline-Multilingual-509h” 

was selected to train a new BNF extractor, a slightly better 

improvement was obtained using the extractor S3. (2) Although 

adding the target language data to “Baseline-Multilingual-509h” 

data to train a new extractor provided a 14% relative ATWV 

improvement, the relative improvement dropped to 2% when the 

target language data are added to “Proposed-Multilingual-96h” 

data (comparing S2 and S3). The improvement was similarly 

diminished when the target language data were added to 

“Proposed-Multilingual-96h” data. (3) The utterances selected 

using our proposed LID based method showed slightly better 

performance than those selected by the previously proposed 

submodular method (comparing S2 and S4, and S3 and S5). (4) 

The amount of selected data also affects the performance of the 

BNF extractor. When only the 14 hours of Creole data, which are 

acoustically closest to the target language data, were added to the 

target language data to train a new extractor (S6), the extractor was 

obviously not as good as the extractor trained with 96 hours of 

acoustically close data (S3) though the extractor S6 still 

outperformed the baseline monolingual BNF extractor. 
 

4.3 Experimental analysis 
 

As mentioned in Section 4.2, only a slightly better improvement 

was obtained when adding the target language data to “Proposed-

Multilingual-96h” (comparing S2 and S3), which is in contrast to 

the obvious gain when adding the data to “Baseline-Multilingual-

509h” (comparing S1 and baseline multilingual BNF extractor). 

Fig. 1 shows the similarity measure between different source 

languages and the target language data based on the LSTM RNN 

trained for LID. It is a posterior probability measurement averaged 

over all the utterance frames of each source language. A high value 

means that the misclassified language is more similar to the target 

language. 

 

 
Fig. 1. Similarity measure between different source languages 

and target language (Swahili). The vertical axis denotes the 

average misclassification posterior probability of all utterance 

frames of each language. 

 

From Fig. 1, we can find that the languages in the “Proposed-

Multilingual-96h” data are more similar to the target language than 

the languages in “Baseline-Multilingual-509h” data. Since more 

data acoustically close to the target language data were selected in 

“Proposed-Multilingual-96h”, it is reasonable that the extra gain 

was not obvious when the target language data was further added 

to the training of the proposed multilingual bottleneck extractor. 

It is worth noting that the “Proposed-Multilingual-96h” data 

were formed by the first 96 hours of utterances with the highest 

utterance-level (not language-level) misclassification probability. 

We found that only two languages (Haitian Creole and Dhohuo) in 

“Proposed-Multilingual” data were ranked the most similar 

languages to Swahili. We believe that some utterances in Zulu and 

Vietnamese not selected in “Proposed-Multilingual” are not 

acoustically close (possibly due to the effect from recording 

environments or/and speakers) to the Swahili data, so that the 

similarity measures between these two languages and the Swahili 

data as shown in Fig. 1 are not among the highest four. 
 

4. CONCLUSIONS 
 

In this paper, we studied how to efficiently train BNF extractors. In 

order to select multilingual data to efficiently build deep bottleneck 

extractors, we proposed a novel multilingual data selection 

method. The proposed method can select utterances that are 

acoustically similar to the target language data. Experimental 

results showed that the selected multilingual data were more 

helpful for building efficient multilingual deep bottleneck 

extractors though a small portion of multilingual data was used. In 

this paper, rapidly updating an existing bottleneck extractor and 

training a new multilingual bottleneck extractor from scratch were 

investigated. We observed that when combining target language 

data and relatively un-similar multilingual data to build a BNF 

extractor, the gain was obvious for KWS of the target language. 

Meanwhile, when combining target language data and relatively 

similar multilingual data to build a BNF extractor, the gain was not 

as obvious as the previous case.  

 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

D
h
o
lu
o

H
ai
ti
an
_
C
re
o
le

Ig
b
o

A
m
h
ar
ic

P
as
h
to

P
ar
ag
u
ay
an

Zu
lu

C
eb

u
an
o

Li
th
u
an
ia
n

Ta
m
il

V
ie
tn
am

es
e

Ta
ga
lo
g

To
k_
P
is
in

Te
lu
gu

K
u
rm

an
ji_
K
u
rd
is
h

K
az
ak
h

A
ss
am

es
e

Ja
va
n
es
e

H
al
h
_M

o
n
go
lia
n

B
en

ga
li

La
o

Tu
rk
is
h

C
an
to
n
es
e

5653



 

5. REFERENCES 
 

[1] J. G. Wilpon, L. R. Rabiner, C.-H. Lee and E. Goldman, 

“Automatic Recognition of Keywords in Unconstrained 

Speech Using Hidden Markov Models,” IEEE Transactions 

on Acoustics, Speech and Signal Processing, vol. 38, no. 11 

pp. 1870-1878, 1990. 

[2] R. C. Rose and D. B. Paul, “A Hidden Markov Model based 

Keyword Recognition System,” in Proc. ICASSP 1990, pp. 

129-132. 

[3] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary 

Independent Spoken Term Detection,” in Proc. SIGIR 2007, 

pp. 615-622. 

[4] D. R. H. Miller, M. Kleber, C.-L. Kao, O. Kimball, T. 

Colthurst, and S. A. Lowe, “Rapid and Accurate Spoken Term 

Detection,” in Proc. Interspeech 2007, pp. 314-317. 

[5] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddintion, 

“Results of the 2006 Spoken Term Detection Evaluation,” in 

Proc. ACM SIGIR 2007, Workshop in Searching Spontaneous 

Conversational Speech (SSCS 2007), pp. 51-56. 

[6] I. Szoeke, M. Fapso, and L. Burget, “Hybrid Word-subword 

Decoding for Spoken Term Detection,” in Proc. SIGIR 2008, 

pp. 121-129. 

[7] N. F. Chen, C. Ni, I-F. Chen, S. Sivadas, V. T. Pham, H. Xu, 

X. Xiao, T. S. Lau, S. J. Leow, B. P. Lim, C.-C. Leung, L. 

Wang, C.-H. Lee, A. Goh, E. S. Chng, B. Ma, H. Li, “Low-

Resource Keyword Search Strategies for Tami,” in Proc. 

ICASSP 2015, pp. 5366-5370. 

[8] C. Ni, C.-C. Leung, L. Wang, H. Liu, F. Rao, L. Lu, N. F. 

Chen, B. Ma, and H. Li, “Cross-lingual Deep Neural Network 

based Submodular Unbiased Data Selection for Low-resource 

Keyword Search,” in Proc. ICASSP 2016, pp. 6015-6019. 

[9] N. F. Chen, S. Sivadas, B. P. Lim, H. G. Ngo, H. Xu, B. Ma, 

and H. Li. “Strategies for Vietnamese Keyword Search,” in 

Proc. ICASSP 2014, pp. 4121-4125.  

[10] N. F. Chen, H. Xu, X. Xiao, V. H. Do, C. Ni, I.-F. Chen, S. 

Sivadas, C.-H. Lee, E. S. Chng, B. Ma, H. Li, “Exemplar-

inspired Strategies for Low-resource Spoken Keyword Search 

in Swahili,” in Proc. ICASSP 2016, pp. 6040-6044.  

[11] C. Ni, C.-C. Leung, L. Wang, N. F. Chen and B. Ma, 

“Unsupervised Data Selection and Word-Morph Mixed 

Language Model for Tamil Low Resource Spoken Keyword 

Spotting,” in Proc. ICASSP 2015, pp. 4714-4718. 

[12] C. Ni, L. Wang, H. Liu, C.-C. Leung, L. Lu, and B. Ma, 

“Submodular Data Selection with Acoustic and Phonetic 

Features for Automatic Speech Recognition,” in Proc. 

ICASSP 2015, pp. 4629-4633. 

[13] Y. Zhang, E. Chuangsuwanich, J. Glass, “Language ID-based 

Training of Multilingual Stacked Bottleneck Features,” in 

Proc. Interspeech 2014, pp. 1-5. 

[14] K. Vesely, M. Karafiat, F. Grezl, M. Janda, and E. Egorova, 

“The Language-independent Bottleneck Features,” in Proc. 

SLT 2012, pp. 336-340. 

[15] K. M. Knill, M. J. F. Gales, S. P. Rath, P. C. Woodland, C. 

Zhang, and S.-X. Zhang, “Investigation of Multilingual Deep 

Neural Networks for Spoken Term Detection,” in ASRU 

2013, pp. 138-143. 

[16] Z. Tuske, D. Nolden, R. Schluter, H. Ney, “Multilingual 

MRASTA Features for Low-resource Keyword Search and 

Speech Recognition Systems,” in Proc. ICASSP 2014, pp. 

7854-7858. 

[17] A. Ghoshal, P. Swietojanski, S. Renals, “Multilingual 

Training of Deep Neural Networks,” in Proc. ICASSP 2013, 

pp. 7319-7323. 

[18] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-

language Knowledge Transfer using Multilingual Deep 

Neural Network with Shared Hidden Layers,” in Proc. 

ICASSP 2013, pp. 7304-7308. 

[19] P. Golik, Z. Tuske, R. Schluter, H. Ney, “Multilingual 

Features Based Keyword Search for Very Low-resource 

Languages,” in Proc. Interspeech 2015, pp. 1260-1264. 

[20] Z. Tuske, P. Golik, D. Nolden, R. Schluter, H. Ney, “Data 

Augmentation, Feature Combination, and Multilingual Neural 

Networks to Improve ASR and KWS Performance for Low-

resource Languages,” in Proc. Interspeech 2014, pp.1420-

1424. 

[21] N. T. Vu, D. Imseng, D. Povey, P. Motlicek, T. Schultz, H. 

Bourlard, “Multilingual Deep Neural Network based Acoustic 

Modeling for Rapid Language Adaptation,” in Proc. ICASSP 

2014, pp. 7639-7643. 

[22] J. Cui, B. Kingsbury, B. Ramabhadran, A. Sethy, K. 

Audhkhasi, X. Cui, E. Kislal, L. Mangu, M. Nuubaum-

Thom, M. Picheny, Z. Tuske, P. Golik, R. Schlüter, H. 

Ney, Mark J. F. Gales, K. M. Knill, A. Ragni, H. 

Wang, Philip C. Woodland, “Multilingual Representation for 

Low-resource Speech Recogntion and Keyword Search,” in 

Proc. ASRU 2015, pp. 259-266. 

[23] Q. B. Nguyen, J. Gehring, M. Muller, S. Stuker, A. Waibel, 

“Multilingual Shifting Deep Bottleneck Features for Low-

resource ASR,” in Proc. ICASSP 2014, pp. 5607-5611. 

[24] H. Xu, V. H. Do, X. Xiao, and E. S. Chng, “A Comparative 

Study of BNF and DNN Multilingual Training on Cross-

lingual Low-resource Speech Recognition,” in Proc. 

Interspeech 2015, pp. 2132-2136. 

[25] E. Chuangsuwanich, Y. Zhang, J. Glass, “Multilingual Data 

Selection for Training Stacked Bottleneck Features,” in Proc. 

ICASSP 2016, pp. 5410-5414. 

[26] C. Ni, L. Wang, C.-C. Leung, F. Rao, L. Lu, B. Ma, and H. 

Li, “Rapid Update of Multilingual Deep Neural Network for 

Low-resource Keyword Search,” in Proc. Interspeech 2016, 

pp. 3698-3702. 

[27] J. Gonzalez-Dominguez, I. Lopez-Moreno, H. Sak, J. 

Gonzalez-Rodriguez, P. J. Moreno, “Automatic Language 

Identification using Long Short-Term Memory Recurrent 

Neural Networks,” in Proc. Interspeech 2014, pp. 2155-2159. 

[28] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, 

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. 

Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech 

Recognition Toolkit,” in Proc. ASRU 2011. 

 

 

5654


