
PAIRWISE LEARNING USING MULTI-LINGUAL BOTTLENECK FEATURES FOR
LOW-RESOURCE QUERY-BY-EXAMPLE SPOKEN TERM DETECTION

Yougen Yuan1,2 , Cheung-Chi Leung2, Lei Xie1∗, Hongjie Chen1, Bin Ma2, Haizhou Li2,3

1School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2Institute for Infocomm Research, A?STAR, Singapore

3Department of ECE, National University of Singapore, Singapore

ABSTRACT

We propose to use a feature representation obtained by
pairwise learning in a low-resource language for query-by-
example spoken term detection (QbE-STD). We assume that
word pairs identified by humans are available in the low-
resource target language. The word pairs are parameterized
by a multi-lingual bottleneck feature (BNF) extractor that
is trained using transcribed data in high-resource languages.
The multi-lingual BNFs of the word pairs are used as an
initial feature representation to train an autoencoder (AE).
We extract features from an internal hidden layer of the
pairwise trained AE to perform acoustic pattern matching
for QbE-STD. Our experiments on the TIMIT and Switch-
board corpora show that the pairwise learning brings 7.61%
and 8.75% relative improvements in mean average precision
(MAP) respectively over the initial feature representation.

Index Terms— pairwise learning, bottleneck features,
autoencoder, spoken term detection, low-resource speech
processing

1. INTRODUCTION

Query-by-example spoken term detection (QbE-STD) is to
search for the occurrence of a spoken query in audio archives
[1, 2, 3]. Recently, many previous works have been inves-
tigated to extract unsupervised acoustic features directly in
low-resource target languages [4, 5, 6, 7], or extract posterior
or bottleneck features (BNFs) from neural networks (NNs)
trained using high-resource non-target languages [8, 9, 10, 11,
12].

In this paper, we propose to perform pairwise learning of
NNs based on multi-lingual BNFs in a low-resource target
language, and use the pairwise learned feature representation
for QbE-STD. Training NNs with paired examples has been
proposed for various tasks [13, 14, 15, 16, 17, 18]. For speech
in a language without any prior linguistic knowledge, it is dif-
ficult to give utterances with appropriate labels. However, it
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is easy for a native speaker to annotate whether the spoken
words in two audio segments are the same. Given the word-
pair information, the matching frame-pair information can be
derived. Pairwise learning is aimed to map a frame pair con-
taining the same sound unit close to each other, and make
the resulted features provide more accurate detection scores
in QbE-STD. In our previous study [19], pairwise learning
based on BNFs has been shown successful in a word discrim-
ination task.

Multi-lingual BNFs are a kind of low-dimensional rep-
resentations which can capture rich information to distin-
guish phonetic classes in multiple languages. They are more
language-independent and have been commonly used in low-
resource languages [20, 21, 22]. This kind of feature repre-
sentation is derived from a multi-lingual bottleneck-type NN,
in which the internal hidden layers are shared across multiple
languages while the softmax layer is language-dependent.
Experiments on automatic speech recognition (ASR) show
that multi-lingual BNFs are more flexible for rapid language
adaptation especially in low-resource languages. Moreover,
multi-lingual BNFs have been used for QbE-STD [11]. To
our best knowledge, this study is the first attempt to use pair-
wise learning based on multi-lingual BNFs, and use pairwise
learning for QbE-STD.

Our proposed method was evaluated on the TIMIT and
Switchboard corpora. To verify the effect of pairwise learning
for QbE-STD, we tested our proposed pairwise learning by
training an autoencoder (AE) with multi-lingual BNFs. The
experiments showed that the multi-lingual BNFs far exceeded
mel-frequency cepstral coefficients (MFCCs), and also out-
performed cross-lingual BNFs. With pairwise learning, the
resulted feature representations were much better than their
original feature representations. Moreover, we investigated
the effect of the amount of word pairs as supervision on our
proposed feature representation, and investigated the effect
of different features in AE training and frame alignment for
QbE-STD.

2. METHODS

We assume that word pairs identified by humans are avail-
able in the low-resource target language. First, a multi-lingual
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bottleneck-type NN is trained1. Then, a deep AE is trained
by using the extracted multi-lingual BNFs of frame aligned
pairs. Finally, this pairwise learned AE feature representation
is used for QbE-STD.

2.1. Multi-lingual BNFs

In this paper, a multi-lingual BNF extractor is trained us-
ing transcribed data from other languages, and the extracted
BNFs are used as an initial feature representation for pairwise
learning. We summarize the training process of multi-lingual
NN in Fig.1, and more details can be seen in [21, 23, 24].
The multi-lingual NN takes filter-bank with pitch features
as input, and outputs phone posteriors for their correspond-
ing language. The characteristic of this NN structure is
that the internal hidden layers of the multi-lingual NN are
language-independent, while its softmax layer is language-
dependent. So all the information of language-dependent
is concentrated in the softmax layer, and the rest of NN is
supposed to produce more language-independent feature rep-
resentation. Moreover, there is one bottleneck layer in the
language-independent hidden layers, and its outputs are ex-
actly what we want to extract for pairwise learning in a new
target language.
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Fig. 1. Multi-lingual BNF extraction.

2.2. Pairwise learning

Pairwise learning is a good idea to capture information of
same word pairs for learning an efficient feature represen-
tation without linguistic transcriptions. It maps a sequence
of input features to a new sequence of feature representa-
tions with the same length. Since AE in [15, 19] has been
shown successful in pairwise learning to obtain a good NN
feature representation, this type of NNs is adopted in our ex-
periments. The procedure of pairwise learning with multi-
lingual BNFs is given in Fig.2. First, multi-lingual BNFs are
extracted from a multi-lingual NN as an initial feature repre-
sentation. Then, a stacked AE is trained in an unsupervised
way directly on this initial NN feature representation using

1If only one language resource is used, it is a cross-lingual bottleneck-
type NN.

the mean squared error (MSE) as loss function. Next, frame
alignment between a word pair is done by dynamic time warp-
ing (DTW). For each matching frame pair (a, a′), a and a′ are
presented as input and output respectively to fine-tune the pre-
vious trained stacked AE. Finally, our pairwise learned final
NN feature representation is extracted from an internal hidden
layer of the trained AE for QbE-STD.
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Fig. 2. Pairwise learning with an autoencoder.

2.3. QbE-STD

Fig.3 depicts the NN-based template matching method for
QbE-STD, which involves feature extraction and DTW detec-
tion. In this paper, we extract features from an internal hidden
layer of the pairwise learned AE, and use the subsequence-
DTW (SDTW) algorithm described in [25] to search a spo-
ken query in the test utterances. Given the acoustic feature
representation U = (u1, u2, ..., um) from a spoken query and
V = (v1, v2, ..., vn) from a test utterance, a cosine distance
between two feature vectors ui(1 ≤ i ≤ m) and vj(1 ≤ j ≤
n) is computed by:

D(ui, vj) = 1− uT
i vj
|ui||vj |

, (1)

where m and n denote the length of each corresponding se-
quence. With a matrix of the cosine distances between each
pair of feature vectors, the SDTW algorithm finds an optimal
alignment path with the minimum distance cost between the
two sequences of feature vectors. Given a spoken query, the
test utterances with the lowest values of the minimum dis-
tance cost are returned by the detection system.

3. EXPERIMENTS

3.1. Data and Experimental Setup

To evaluate our proposed feature representation on speech
recordings in different conditions, our QbE-STD experiments
were conducted on the TIMIT and Switchboard corpora. On
TIMIT, we followed the data setup as in [6, 7]. The training
set consists of 10k word pairs, and each word has at least 5
English letters and 0.5 seconds. The keyword set consists of
346 spoken term examples, and each of them has at least 6 En-
glish letters and 0.35 seconds. The test set of 944 utterances
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Fig. 3. NN-based template matching method for QbE-STD.

is used as a speech archive. On Switchboard, we followed
the data setup as in [15, 17, 19, 26], The training set consists
of 100k word pairs, and each example has at least 5 English
letters and 0.5 seconds. The keyword set also consists of 346
spoken term examples with the same requirement. The test
set of 100 utterances is used as a speech archive.

We considered Mandarin Chinese and Spanish as high-
resource non-target languages. A multi-lingual BNF ex-
tractor was trained by using about 170 hours of data from
the HKUST Mandarin Chinese telephone speech corpus
(LDC2005S15) and 152 hours of data from the Fisher Span-
ish telephone speech corpus (LDC2010S01), and each corpus
was used to train a cross-lingual BNF extractor. We consid-
ered English as a low-resource target language in the TIMIT
and Switchboard corpora. For multi-lingual or cross-lingual
BNF extraction, the input features are 39-dimensional filter-
bank with pitch features. The model of multi-lingual NN used
the configuration of 1500-1500-40-1500-[L1...Ln], where n
denotes the number of languages involved, and Ln is the num-
ber of tied triphone states of the corresponding language2. We
followed the configuration of AE in [15, 19]. The AE consists
of 13 hidden layers with 100 units in each layer. We extracted
features from an internal hidden layer of the pairwise learned
AE3 as our proposed feature representation.

Three different evaluation metrics are used for QbE-STD
evaluation as in [2, 5, 7]: (1) mean average precision (MAP),
which is the mean of the average precision for each query
in the test set; (2) the average precision of the top N utter-
ances in the test set (P@N), where N is the number of target
utterances containing the query term in the test set; (3) the av-
erage precision of the top five or ten utterances in the test set
(P@5/P@10);

2In this paper, n equals 2, L1 equals 412 and L2 equals 420.
3In this paper, the 9th layer of AE was used on TIMIT and Switchboard

corpora.

Table 1. Comparison of different feature representations for
QbE-STD on TIMIT. 10k word pairs are used for pairwise
training.

Representations No pairwise training Pairwise training
(MAP/P@N/P@10) (MAP/P@N/P@10)

MFCCs 0.285/0.289/0.247 0.297/0.293/0.257
BNFs (Mandarin) 0.494/0.459/0.413 0.571/0.538/0.467
BNFs (Spanish) 0.540/0.512/0.446 0.594/0.561/0.484

BNFs (Multi-lingual) 0.552/0.524/0.461 0.594/0.561/0.490

Table 2. Comparison of different feature representations for
QbE-STD on Switchboard. 100k word pairs are used for pair-
wise training.

Representations No pairwise training Pairwise training
(MAP/P@N/P@5) (MAP/P@N/P@5)

MFCCs 0.232/0.200/0.232 0.258/0.236/0.260
BNFs (Mandarin) 0.370/0.338/0.446 0.417/0.382/0.451
BNFs (Spanish) 0.388/0.358/0.475 0.430/0.398/0.484

BNFs (Multi-lingual) 0.400/0.365/0.485 0.435/0.404/0.473

3.2. Comparison of feature representations

Table 1 and Table 2 show the evaluation results of differ-
ent feature representations for QbE-STD on the TIMIT and
Switchboard corpora. As illustrated in both tables, the multi-
lingual BNFs are much better than MFCCs in terms of the
three aforementioned evaluation metrics. This indicates that
the information captured in the multiple languages for phone
classification helps to learn an efficient acoustic feature rep-
resentation for QbE-STD. Moreover, the multi-lingual BNFs
usually outperform the cross-lingual BNFs. We believe that
the multi-lingual BNFs capture more language-independent
information, and they can provide a better feature representa-
tion than cross-lingual BNFs in the limited target language re-
sources. In addition, the cross-lingual BNFs trained on Span-
ish outperform those trained on Mandarin, which is in line
with our earlier results in a word discrimination task [19].
This demonstrates again that the cross-lingual BNFs are in-
fluenced by the selected language.

When pairwise supervision on the target language data is
performed, the resulted feature representations have a signifi-
cant improvement. This result indicates that pairwise learning
provides a more efficient feature representation for QbE-STD.
From both tables we can see that the pairwise learned feature
representation based on the multi-lingual BNFs usually hold
the best performance in the QbE-STD tasks.

3.3. Dependence on the amount of word-pair supervision

From the above results, we can find that pairwise learning al-
ways provides gain in QbE-STD tasks. To investigate the de-
pendence on the amount of word-pair supervision, we varied
the number of word pairs N=0.1k,1k,10k,100k (k=1000) by
taking random subsets of the full training set on Switchboard
as in [15, 19]. Fig.4 shows the QbE-STD results of different
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feature representations on Switchboard with different number
of word pairs. We can find that the multi-lingual BNFs al-
ways outperform MFCCs with the same amount of word-pair
supervision. This verifies that our proposed pairwise learn-
ing based on multi-lingual BNFs can consistently provide a
better feature representation for QbE-STD. When more word
pairs are given, the pairwise learned NN feature representa-
tion can get a better performance. In addition, with 10k word
pairs (1/10 of the whole word pairs), the pairwise learned rep-
resentations give comparable performance to those using all
the word pairs. This indicates that we can learn an efficient
feature representations with 10k word pairs, and it would be
practical for the scenario when limited word pairs are avail-
able.

Fig. 4. Comparison of different feature representations with
different number of word pairs in pairwise learning. QbE-
STD is performed on Switchboard.

3.4. Effect of different features in AE training and frame
alignment

We observed that using multi-lingual and cross-lingual BNFs
for parameterization of word pairs brought more obvious
improvement in pairwise learning than using MFCCs. This
led us to investigate whether the more obvious improvement
is because of using more efficient BNFs in the training of
AE, or because of more accurate frame-level DTW alignment
provided by BNFs. To investigate this issue, we performed
pairwise learning with different combination of these features
for frame-level DTW alignment and the training of AE. The
QbE-STD results on the two corpora are shown in Table 3
and Table 4. Regardless of either MFCCs or multi-lingual
BNFs are used for frame-level DTW alignment, multi-lingual

BNFs consistently provide much better QbE-STD results
than MFCCs when presented to the AE. This indicates the
importance of using multi-lingual BNFs in the training of
AE.

Table 3. Effect of different features in AE training and frame
alignment. QbE-STD is performed on TIMIT.

Input
features of
AE training

Features
for

alignment MFCC
(MAP/P@N/P@10)

BNFs (Multi-lingual)
(MAP/P@N/P@10)

MFCCs 0.285/0.289/0.247 0.320/0.314/0.274
BNFs (Multi-lingual) 0.587/0.556/0.486 0.594/0.561/0.490

Table 4. Effect of different features in AE training and frame
alignment. QbE-STD is performed on Switchboard.

Input
features of
AE training

Features
for

alignment MFCC
(MAP/P@N/P@5)

BNFs (Multi-lingual)
(MAP/P@N/P@5)

MFCCs 0.258/0.236/0.260 0.273/0.248/0.286
BNFs (Multi-lingual) 0.432/0.395/0.483 0.435/0.404/0.473

4. CONCLUSION

We have proposed to perform pairwise learning using multi-
lingual BNFs of word pairs for QbE-STD. Pairwise learning
facilitates supervision with data in a target language, even
though no linguistic knowledge is available in the target lan-
guage. Multi-lingual BNFs, which capture rich information
of phonetic discrimination from other language resources,
have been shown successful for QbE-STD. Pairwise learn-
ing makes the resulted feature representation more capable
in phonetic discrimination for a new target language, which
brings further performance improvement on low-resource
QbE-STD tasks. In future work, we will investigate methods
of word-level pairwise learning for this task, which avoids
frame-level alignment of word pairs.
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