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ABSTRACT

Humans analyze sounds not only based on their frequency
contents, but also on the temporal variations of the frequency
contents. Inspired by auditory perception, we propose a deep
neural network (DNN) based dereverberation algorithm in the
rate domain, which presents the temporal variations of fre-
quency contents, in this paper. We show convolutional noise
in the time domain can be approximated to multiplicative
noise in the rate domain. To remove the multiplicative noise,
we adopt the rate-domain complex-valued ideal ratio mask
(RDcIRM) as the training target of the DNN. Simulation re-
sults show that the proposed rate-domain DNN algorithm is
more capable of recovering high-intelligible and high-quality
speech from reverberant speech than the compared state-of-
the-art dereverberation algorithm. Hence, it is highly suitable
for speech applications involving human listeners.

Index Terms— Dereverberation, deep neural network,
ideal ratio mask, modulation spectrum.

1. INTRODUCTION

In our daily lives, intelligibility and quality of speech is
inevitably degraded due to the reverberant effect of surround-
ing environments. Therefore, it is important to recover clean
speech from reverberant speech for many applications, such
as automatic speech recognition (ASR), hearing aids, and
voice transmission.

The reverberant speech is formed by convolving clean
speech with the room impulse response (RIR), whose length
depends on the size and the interior furnishings of the room
and is usually not short comparing with the length of an ut-
terance. Therefore, to recover clean speech from reverber-
ant speech by deconvolution becomes a difficult task. Sev-
eral single-channel dereverberation algorithms have been pro-
posed. Some methods are based on the idea of inverse filtering
[1][2] and some are based on the idea of spectral suppression
[3][4]. Even if the involved RIR is known, the inverse filter-
ing approach does not always guarantee to work due to the
non-causality property of the problem. In contrast, reverber-
ant speech comprises of early reflections and late reverbera-
tion and the spectral suppression methods focus on diminish-
ing late reverberation. The fact that keeping early reflections

somehow improves speech intelligibility [5][6] backs up the
approach of spectral suppression.

During recent years, deep learning has been widely used
in many research fields and provided a performance boost
over conventional methods. For de-noise and dereverbera-
tion tasks, a deep neural network (DNN) can be trained as
a regression model to convert a noisy magnitude spectrogram
back to a clean one. However, cleaning up only the magnitude
spectrogram does not recover a high quality speech signal if
the phase spectrogram is still damaged. Since the reverberant
effect seriously degrades the phase spectrogram, the magni-
tude and the phase spectrograms have to be cleaned up at the
same time for dereverberation methods to recover high qual-
ity speech.

Human hearing demonstrates great capability of dealing
with noise and reverberation. Therefore, it is intuitive to adopt
certain properties of hearing perception for dereverberation.
Based on neuro-physiological data recorded on the auditory
cortex, an auditory model has been proposed in [7]. In the
model, the brain treats the spectrogram of the sound as a 2D
image and further analyzes it in the spectro-temporal modu-
lation domain, which is the 2D Fourier transform of the time-
frequency domain (where the spectrogram resides). In other
words, the brain analyzes the sound in a double Fourier trans-
form fashion (a double wavelet transform fashion, to be pre-
cise, due to the constant-Q selectivity of auditory-related neu-
rons). The temporal modulation domain is referred to as the
rate domain while the spectral modulation domain is referred
to as the scale domain. Under the framework of the double
Fourier transform analysis, reverberant speech resulted from
the convolution with a RIR in the time domain can be approx-
imately expressed in the rate domain as the modulation con-
tent of clean speech corrupted with a RIR-related multiplica-
tive noise. Therefore, in this paper, we propose a rate-domain
based DNN dereverberation algorithm to diminish the RIR-
related multiplicative noise in the rate-domain. In addition,
to recover high quality speech, we utilize the rate domain
complex-valued ideal ratio mask (RDcIRM) as the training
target of the DNN to simultaneously deal with magnitude and
phase components in the rate and the spectrogram domains.
Once the rate domain is cleaned up, the time domain wave-
form can be obtained in the double inverse Fourier transform
fashion.
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The rest of this paper is organized as follows. In Section
2, we formulate the problem and show the transformation of
the reverberant signal from the time domain to the rate do-
main. In Section 3, we introduce the RDcIRM and propose
the rate-domain DNN for dereverberation. Experiment results
are demonstrated in Section 4 and conclusion is given in Sec-
tion 5.

2. PROBLEM FORMULATION

The single-channel reverberant speech signal r(n) is obtained
by convolving the clean signal x(n) with the N-tap RIR h(n)
in the time domain as:

r(n) =

N−1∑
p=0

h(p)x(n− p) (1)

The tap number N of the RIR is usually quite large in the
time domain such that the time-domain deconvolution from
r(n) back to x(n) becomes a very difficult task. The spec-
trogram of the reverberant signal can be obtained by applying
the short-time Fourier transform (STFT) to the above equa-
tion. After certain approximations, the complex spectrogram
of the reverberant signal can be obtained by the bin-wise con-
volution of the complex spectrogram of the clean signal and
the complex spectrogram of the RIR [8], i.e.,

R(k,m) =

Nh−1∑
p=0

H(k, p)X(k,m− p) (2)

where R(k,m), X(k,m), and H(k,m) respectively denote
the complex spectrograms of the reverberant signal, the clean
signal, and the RIR. The k and m denote the frequency bin
and the time frame indexes, and Nh is the length of the spec-
trogram of RIR counted in frames.

Obviously, Nh is much smaller than N . In other words,
by these approximations, we transfer the time-domain convo-
lution with a long-tap RIR into a frequency bin-wise convolu-
tion with a short-tap RIR in the STFT domain. Furthermore,
we create the rate-domain representation by taking another
frequency bin-wise Fourier transform on the complex spec-
trogram as Eq. (3).

rrate(k, n
′) = Fm{R(k,m)} = hrate(k, n

′)xrate(k, n
′)
(3)

where rrate, xrate, and hrate denote the complex-valued rate-
domain representations of the reverberant signal, the clean
signal, and RIR, respectively. The n′ is the rate bin index and
the Fm{·} denotes the frequency bin-wise Fourier transform
of the complex-valued frame series.

It has been shown that the complex-valued ideal ratio
mask (cIRM) of the spectrogram can be used as the train-
ing target of a STFT-domain DNN to enhance speech [9].
Simulation results showed that this kind of DNN can dimin-
ish additive noise effectively but not reverberant noise. We

think the reason is that the time-domain convolutional noise
is still a convolutional noise on the spectrogram as per Eq.
(2). And multiplying a gain is effective in reducing additive
noise (such as the Wiener filter) and multiplicative noise, but
not convolutional noise. Therefore, applying a mask on the
spectrogram won’t do any good in reducing reverberation.
Motivated by hearing perception, we transfer the dereverber-
ation task from the STFT domain to the rate domain where
we deal with RIR-related multiplicative noise. In the next
section, we propose a rate-domain DNN which learns RD-
cIRM to suppress the multiplicative noise in the rate domain
for dereverberation.

3. PROPOSED ALGORITHM

In this section, we describe the proposed rate-domain DNN-
based dereverberation algorithm with its key elements, the
RDcIRM and the re-synthesis procedure.

3.1. Rate domain complex-valued ideal ratio mask

The RDcIRM is derived from the rate-domain representations
of the clean and the reverberant signals. Here, we describe
the procedures to produce the rate-domain representation us-
ing the clean signal as an example. The 16 kHz sampled clean
signal x(n) is first transferred into the spectrogram X(k,m)
using a 20-ms window with a 10-ms shift. The 1024-point
discrete Fourier transform (DFT) is performed for each frame
such that the spectrogram has 513 frequency bins (including
the bin of DC). After obtaining the spectrogram X(k,m), we
apply a 512-point DFT to each frequency bin as Eq. (3) to
get the rate-domain representation xrate(k, n′) ∈ C513∗512.
Since the complex-valued spectrogram X(k,m) is consid-
ered, all the 512 points in the rate domain have to be preserved
for further processing. The RDcIRM IMrate, which is the
training target of the DNN, is then obtained by the element-
wise division between the rate-domain representations of the
clean and the reverberant signals as follows

IMrate(k, n
′) =

xrate(k, n
′)

rrate(k, n′)
(4)

Similar to the approach of training a DNN to learn the
cIRM from magnitude spectrograms in a frame-by-frame
fashion [9], we trained a DNN to learn the RDcIRM from
rate-domain magnitude representations in a rate-by-rate fash-
ion. Fig. 1 shows the structure of the proposed DNN to learn
the RDcIRM. For each rate, the magnitude representations
across 513 frequency bins were used as input features to the
DNN, with three 1024-neuron hidden layers, while the train-
ing target consisted of the real part and the imaginary part of
the RDcIRM.
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Fig. 1. Structure of the proposed DNN for RDcIRM training.

3.2. Re-synthesis

For dereverberation, we first obtained the estimated RDcIRM
ˆIMrate(k, n

′) from the trained DNN and then conducted the
element-wise multiplication to the reverberant signal in the
rate domain as in Eq. (5).

x̂rate(k, n
′) = rrate(k, n

′) · ˆIMrate(k, n
′) (5)

where x̂rate denotes the estimated clean signal in the rate do-
main. In addition, the magnitude of x̂rate was thresholded as
in Eq. (6):

|x̂rate(k, n′)| =

{
|x̂rate(k, n′)| if |x̂rate(k, n′)| ≥ γ,
|x̂rate(k, n′)| otherwise.

(6)
where |x̂rate(k, n′)| denotes the averaged magnitude of the
estimated rate representation of the clean signal, and γ de-
notes the threshold which was empirically set to 100 in this
study.

Once the estimated rate-domain representation of the
clean signal x̂rate was obtained, the frequency bin-wise in-
verse Fourier transform was performed to transfer it back
to the STFT domain. Then, the estimated spectrogram was
converted to a time-domain waveform by the inverse STFT
with the overlap-and-add method. Fig. 2 shows the magni-
tude spectrograms of the original clean signal, the reverber-
ant signal, and the reconstructed clean signal. The central
panel clearly shows the smeared time-frequency structures
of speech due to reverberation. The bottom panel shows the
smeared structures have been successfully restored to their
original shapes but with some additive noise probably due to
clipping in the rate domain as in Eq. 6. This artificial additive
noise can be easily removed by conventional methods such as
the Wiener filter [10]. Therefore, we adopted the Wiener filter
as a post-processing method to our dereverberation algorithm
in our experiments.

4. EXPERIMENT RESULTS

Our main goal is to develop a dereverberation algorithm for
human-listening applications, not for machine-listening ap-
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Fig. 2. Dereverberation results. (a) Magnitude spectrogram
of original clean speech. (b) Magnitude spectrogram of rever-
berant speech with T60 = 0.9 sec. (c) Magnitude spectrogram
of re-synthesized speech after dereverberation.

plications. Therefore, in addition to the frequency-weighted
signal-to-reverberation ratio (SRRfw) [11], we adopt two
other objective measures, the short time objective intelligibil-
ity (STOI) [12] and the perceptual evaluation of speech qual-
ity (PESQ) [13], to evaluate speech intelligibility and speech
quality of re-synthesized speech of the proposed algorithm.
The SRRfw computes the averaged signal-to-reverberation
ratio over critical bands with different weights as follows:

SRRfw =
10

M

M∑
m=1

∑K
k=1 w(k,m)log10

|X(k,m)|2

(|X(k,m)|−|X̂(k,m)|)2∑K
k=1 w(k,m)

(7)
where |X(k,m)| and |X̂(k,m)| denote the magnitude spec-
trograms of the clean signal and the resynthesized signal, re-
spectively, and K is the total number of frequency bin and
M is the total number of frame. The weights w(k,m) can be
selected as:

w(k,m) = |X(k,m)|p (8)

where p was set to 2 in our experiments to account for the
power of the magnitude spectrogram.

In our experiments, the RIR generator [14] was used to
generate simulated RIRs, which were convolved with clean
utterances to produce reverberant utterances. We generated
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Fig. 3. Performance of dereverberation in terms of three measures. ”Unprocessed” denotes original reverberant signals, ”Kun
Han [16]” denotes the compared state-of-the-art dereverberation system, ”RDcIRM” denotes the proposed algorithm without
the post processing (Wiener filter), and ”RDcIRM + post” denotes the proposed algorithm with the post processing. 6 test
conditions from combinations of two rooms (A and B) and three T60 (0.3, 0.6 and 0.9 sec) are expressed as Room(T60).

six RIRs from two different rooms (room A and room B) with
three different T60, 0.3, 0.6 and 0.9 sec. 200 clean utterances
were extracted from the TIMIT corpus [15] and convolved
with the six RIRs to constitute the training set of 1200 re-
verberant utterances. The other different 100 utterances from
the TIMIT corpus were used to convolve with the six RIRs to
constitute the test set of 600 reverberant utterances.

Fig. 3 shows the average performance of the proposed
algorithm and the compared state-of-the-art system, which
adopts a DNN to map multiple adjacent frames of the re-
verberant magnitude spectrogram to the present frame of
the clean magnitude spectrogram [16], in terms of three
measures under 6 test conditions. Fig. 3(a) shows the pro-
posed RDcIRM method has lower SRRfw scores than the
compared system due to the artificial additive noise intro-
duced by the rate-domain clipping. However, the scores of
the proposed method can be greatly increased by removing
the artificial noise using a simple post-processing Wiener
filter. On the other hand, Fig. 3(b) and (c) show the pro-
posed method provides a great advantage over the compared
method in terms of STOI and PESQ scores. In addition,
these results clearly show that the artificial additive noise of
our method only degrades PESQ scores but has no negative
impacts on STOI scores. Once the artificial noise being re-
moved by the Wiener filter, the PESQ scores will advance
higher as shown in Fig. 3(c). Based on these results, we
can conclude that the proposed method is better at preserving
speech intelligibility and speech quality so that it is more
suitable for human-listening applications. Sound examples
from the proposed dereverberation method are available at
http://perception.cm.nctu.edu.tw/sound-demo/.

To evaluate the generality of the proposed method, we
trained the RDcIRM from conditions of T60 ∈ {0.3, 0.6, 0.9}
sec and tested the method for different T60. The STOI scores
at all T60 conditions shown in Fig. (4) demonstrate the pro-
posed method can fairly preserve speech intelligibility even
in unseen T60 conditions.
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Fig. 4. Generalization test for different T60. The method for
the ”Proposed” curve is the proposed RDcIRM method.

5. CONCLUSION

In this paper, we propose a rate-domain dereverberation al-
gorithm. Inspired by auditory perception, the complex spec-
trogram of the speech signal is first bin-wise transferred to
its temporal-variation domain, the rate domain. In this way,
convolutional noise in the time domain can be approximated
as multiplicative noise in the rate domain. We then build the
RDcIRM as the training target of a DNN to remove the multi-
plicative noise for dereverberation. Compared with a state-of-
the-art dereverberation system [16], the proposed algorithm
can produce de-reverberated speech with higher speech intel-
ligibility and speech quality scores such that it is more suit-
able for human-listening applications.
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