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ABSTRACT

Auto-regressive modeling is a prevalent source-filter separation
method of speech. Conventional linear prediction (LP) and its
derivatives such as weighted linear prediction (WeLP) produce para-
metric spectral models within a linear frequency scale, whereas
frequency-warped linear prediction (WaLP) can be used to take
into account the frequency sensitivity of the human auditory sys-
tem. From the perspective of glottal vocoding, the principles behind
WeLP have been found to be beneficial for an accurate separation
of the glottal source signal and the vocal tract transfer function,
but this approach can not utilize the auditory benefits of frequency
warping. On the other hand, the WaLP approach suffers from less
accurate source-filter separation properties. In this study, a gener-
alized frequency-warped time-weighted linear prediction (WWLP)
analysis is proposed. Experiments with WWLP are performed
within the context of glottal vocoding. The subjective listening test
results show that WWLP-based spectral envelope modeling is able
to increase quality over previously developed methods in some of
the test cases.

Index Terms— Linear prediction, vocoder, glottal inverse filter-
ing, speech synthesis

1. INTRODUCTION

The source-filter model of speech production [1] is a prevalent
method of decomposing speech into a representation that enables
efficient compression and modeling of the signal in applications
such as speech coding [2] and vocoding in statistical parametric
speech synthesis (SPSS) [3]. The source-filter model assumes that
the speech signal is produced by a convolution between an excitation
signal and a filter representing the spectral envelope of speech. In
speech coding, linear prediction (LP) [4] -derived codecs utilizing
residual codebooks have been used to obtain high quality speech
with low bit-rates [2]. In the field of SPSS-related vocoding, the
code-excited linear prediction approach cannot be used as such be-
cause of the sparse representation of the residual that is unsuitable
for statistical modeling. Commonly in vocoding approaches based
on mixed excitation, such as the widely used STRAIGHT vocoder
[5, 6], the spectral envelope of the signal is modeled as mel-cepstral
(MCEP) coefficients that take into account the frequency sensitivity
of the human auditory system [7]. In these vocoders, the voiced
excitation signal is modeled as a spectrally flat waveform which is
generally parameterized with fundamental frequency (f0) and some
type of a band aperiodicity measure [6].

LP-based vocoding approaches of SPSS have been particularly
used in glottal vocoders [3]. In these vocoders, the source-filter
model is adopted by separating the (voiced) speech signal into the
glottal volume velocity signal, the vocal tract transfer function, and

the lip radiation effect. The separation is computed with glottal in-
verse filtering (GIF) algorithms [8] that almost exclusively use auto-
regressive (AR) techniques on a linear frequency scale in modeling
of the vocal tract, thereby making the AR coefficients appropriate
for the vocoder implementation. With wide-band speech (i.e. sam-
pling frequency Fs > 16kHz), a trade-off must be made between
the accuracy of the GIF-estimated vocal tract envelope and the au-
ditory accuracy of the AR model: to obtain AR models capable of
modeling the most important lowest 3-4 formants accurately, GIF al-
gorithms need to use relatively large AR filter orders (e.g. p = 80 for
Fs = 48 kHz) thereby also allocating extensive resources to model
the higher, auditorily less important frequencies. To a certain extent
this can be solved with frequency-warped linear prediction (WaLP)
[9]. Using WaLP in GIF, however, deteriorates the accuracy of the
source-filter decomposition because auditory-based frequency warp-
ing has a tendency to focus on harmonic peaks of the excitation in
the most important lower frequency bands [10] as illustrated in Fig-
ure 1. An alternative approach was studied in [11], where band-wise
processing of the speech signal in linear frequency scale was ex-
plored in glottal vocoding, thereby achieving improved quality over
a previous WaLP-based system.

On the other hand, time-weighted linear prediction (WeLP) [12]
has been previously proposed to specifically de-emphasize the con-
tribution of the harmonic peaks in AR envelope modeling. The use
of WeLP-based techniques has been proven to be beneficial in glottal
inverse filtering and formant estimation [13, 14]. In this study, a fu-
sion of frequency-warped LP (WaLP) and time-weighted LP (WeLP)
is proposed to obtain a new AR modeling technique called gener-
alized frequency-warped time-weighted linear prediction (WWLP).
With the proposed fusion, we aim to combine psychoacoustical ben-
efits of WaLP to the accurate formant extraction properties of WeLP
thereby resulting in new vocal tract models to be used in glottal
vocoders. Section 2.1 presents the formulation of WWLP and its
weight function, Section 3 briefly documents the use of WWLP in
the GlottDNN vocoder [11], Section 4 presents the subjective lis-
tening test experiments and results obtained with the WWLP-based
vocoder, and Section 5 provides discussion and conclusions of the
WWLP approach.

2. FREQUENCY-WARPED TIME-WEIGHTED LINEAR
PREDICTION (WWLP)

2.1. WWLP optimization

In AR modeling, sample sn at time-index n is modeled as a linear
combination of p previous samples:

sn =

p∑
k=1

aksn−k +Gun (1)
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(a) Warped magnitude spectrum (λ=0.766, Fs=48 kHz)
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Fig. 1. Example of WWLP- and WaLP -derived (a) spectral en-
velopes and the corresponding (b) residual signals.

where ak are denoted as the prediction coefficients, G is the filter
gain, and un is the excitation signal of the AR process [1].

In WaLP, [9] the AR model predicts each sample based on the p
previous warped samples:

sn =

p∑
k=1

akyk,n +Gun (2)

where yk,n is the output of some general functionDk(z) that models
the warped delay line. In WaLP, a cascade of first-order all-pass
elements is used to model the delay line:

Dk(z) =

k∏
i=1

z−1 − λ
1− λz−1

, (3)

where λ is the warping coefficient. Based on this, yk,n can be ex-
pressed as:

yk,n =

{
sn , k = 0∑∞

m=0 dk,msn−m , 1 ≤ k ≤ p
(4)

where dk,m is the mth sample of the impulse response of Dk(z).
To obtain the optimal coefficients ak of the model in Eq. 2,

an optimization criterion must be selected. In conventional LP and
WaLP, the squared sum of the prediction error en (i.e. the residual)
is minimized:

EWaLP =

N−1∑
n=0

e2n =

N−1∑
n=0

(sn −
p∑

k=1

akyk,n)
2, (5)

where N denotes the frame length. However, the approach taken
with WWLP is to use a weighted squared sum as the optimization

criterion, akin to that used in Weighted Linear Prediction (WeLP)
[12, 15]:

EWWLP =

N−1∑
n=0

Wne
2
n =

N−1∑
n=0

Wn(sn −
p∑

k=1

akyk,n)
2 (6)

where Wn is a temporal positive-valued weight function that en-
ables emphasizing or de-emphasizing residual energy function sam-
ples (e2n) when optimizing the AR coefficients ak. With the error
criterion set, an analytic solution for the optimal coefficients can be
obtained by setting the differentials of Eq. 6 with respect to the pre-
diction coefficients ak to zero. This leads to a set of normal equa-
tions:∑

n

Wn

(
p∑

k=1

akyk,n

)
yj,n =

∑
n

Wnsnyj,n, 1 ≤ j ≤ p (7)

In matrix notation, this set of equations is equivalent to(∑
n

Wnyny
ᵀ
n

)
a =

∑
n

Wnsnyn (8)

where ap×1 = [a1, a2, . . . , ap]
ᵀ, and yp×1

n = [y1,n, y2,n, . . . , yp,n]
ᵀ.

Using the following matrix definition

Rp×p =
∑
n

Wnyny
ᵀ
n, (9)

the optimal solution can be expressed as

aopt = R−1

(∑
n

Wnsnyn

)
. (10)

When summing from n=0 to n=N-1+p, matrix R in Eq. 9 can
be interpreted as the frequency-warped and time-weighted autocor-
relation matrix of the analyzed signal. Contrary to the matrix ob-
tained in conventional autocorrelation LP or WaLP, R does not have
a Toeplitz structure, so the Levinson-Durbin algorithm [1] can not
be used to compute the optimal WWLP coefficients. Instead, the
solution must be computed by other methods such as the Cholesky
decomposition [1].

2.2. Warping coefficient

The warping coefficient λ is used to determine the amount of all-
pass phase warping that takes place in a single unit delay step. For
warping values −1 < λ < 1, the system can be deemed stable [16].
For λ = 0, the formula of the all-pass element presented in Eq. 3
reduces to a unit delay (z−1), and no frequency warping occurs. For
λ > 0, the frequency resolution is increased for lower bands, and for
λ < 0 the resolution is increased for higher bands.

The frequency warping model of Eq. 3 can be used to satisfacto-
rily represent the frequency sensitivity of the human auditory system
with a close matching to the Bark scale [17]. The best matching λ
value for the Bark scale for a given sampling frequency Fs is given
by [17, 10]

λFs ≈ 1.067

(
2

π
arctan(0.06583fs/1000)

)1/2

− 0.1916 (11)

For example, λ48kHz ≈ 0.766, and λ16kHz ≈ 0.576. While Eq. 11
defines λ simply as a function of Fs, it should be noted, however,
that the corresponding value of λ might not be optimal considering
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the chosen end-user performance metric, which in many cases is the
perceived speech quality. Studies utilizing WaLP have indeed re-
ported that using a value of λ that is lower than that determined in
Eq. 11 results in the best perceptual results [18].

2.3. Weight function

The selection of the weight function Wn for the computation of the
time-weighted autocorrelation matrix R is of particular interest es-
pecially for voiced speech signals, where speech is produced by the
coupling of the glottal excitation signal with the resonances of the
vocal tract. In many applications (e.g. formant tracking [14], glottal
inverse filtering [13]) it is desirable to decouple the glottal source
signal and the vocal tract transfer function. WeLP, with a properly
selectedWn, has been shown to provide an effective method to com-
pute such a decoupling and the results show improved accuracy both
in formant tracking [14, 19] and glottal inverse filtering [13].

Originally, the short-term energy (STE) function was proposed
for WeLP [12], and it has also been used in [20]:

Wn,STE =

M∑
k=1

s2n−k (12)

where M is the length of the energy window. The STE function can
be computed with ease straight from the input signal. With the typi-
cal choice of M = p, STE generally assumes large values after the
glottal closure instants (during the glottal closed phase), and small
values during the glottal open phase of the speech signal [12].

Recently, a more precisely crafted attenuated main excitation
(AME) weight function was proposed for WeLP in [14] and [13] to
obtain more accurate estimates of the vocal tract transfer function.
In the quasi-closed phase analysis (QCP) glottal inverse filtering
method, the AME weight function is formulated so that the samples
within the vicinity of the GCIs of the analysis frame are given (near)
zero weighting, and the samples corresponding roughly to the glot-
tal closed phase are given a constant weight. QCP has been shown
to provide state-of-the-art results when tested with speech of good
recording quality [13, 21]. The effect of the AME weight function
to the obtained WWLP spectral envelope is illustrated in Figure 1(a),
where it can be seen that even though the lower frequency area of the
spectrum is expanded, the envelope avoids excessively modeling the
harmonic peaks within the low bands, and the obtained residual sig-
nal in Figure 1(b) looks like a glottal flow derivative waveform.

If Wn is constant, the analysis generalizes into conventional LP
(for λ = 0) or WaLP (λ 6= 0) analysis, which is suitable for unvoiced
speech. Table 1 summarizes the various forms of LP analysis that
can be achieved by adjusting Wn and λ.

Table 1. The LP methods to which WWLP generalizes to based on λ
and Wn.

λ = 0 λ 6= 0
Wn constant LP WaLP
Wn non-constant WeLP WWLP

3. WWLP-BASED GLOTTAL VOCODING

GlottDNN [11] is a glottal vocoder that utilizes the QCP algorithm
[13] to decompose speech into the glottal source signal and the vo-
cal tract transfer function. The AR vocal tract transfer function is

parametrized as line spectral frequencies (LSFs) [22]. The glottal
source is parametrized with its f0, energy, spectral tilt (as LSFs), and
voiced noise component spectral envelope (LSFs + energy). During
the vocoder synthesis, the glottal excitation is generated with a deep
neural network (DNN) that takes the vocoder feature vector as its
input, and produces a two-pitch period glottal flow derivative pulse
as its output [23]. After the initial glottal pulse generation, the noise
component is added to the pulse, and the obtained sum signal is fil-
tered with a spectral matching filter to match the target spectral tilt
envelope. The final voiced excitation signal is produced with a pitch-
synchronous overlap-add (PSOLA [24]) procedure of the generated
waveforms. Finally, the excitation signal is filtered with an adaptive
all-pole filter based on the vocal tract transfer function LSFs.

In the current study, the WWLP-based vocal tract spectral mod-
eling was implemented to GlottDNN by modifying the conventional
QCP algorithm to work with WWLP instead of WeLP as in [13]. A
warping coefficient of λ = 0.42 and a prediction order p = 60 were
chosen, as they are prevalently used in STRAIGHT-based systems.
For the training of the excitation generation DNN, the target glottal
flow pulses were computed with the original WeLP-based QCP al-
gorithm to ensure optimal quality of the waveforms. The DNN input
vectors were computed with WWLP.

4. EXPERIMENTS

The performance of the WWLP-based GlottDNN vocoder was
evaluated in two different subjective listening tests: One for anal-
ysis/synthesis quality, and one for text-to-speech (TTS) synthesis
quality. For both test types, two different full-band (Fs = 48 kHz)
voices were used. A male voice, “Nick” [25], and a female voice,
“Nancy” [26]. The listening tests were preformed as online tests
based on the Beaqlejs application [27].

4.1. Analysis/synthesis listening test

The analysis/synthesis procedure corresponds to parameterizing a
speech signal into vocoder parameters, and then re-synthesizing the
signal from these parameters. It can be argued that it represents
the optimal speech synthesis quality that can be achieved with a
given vocoder, as the vocoder parameter trajectories are obtained
from natural speech. In the present study, the WWLP-QCP based
GlottDNN vocoder was compared to two competing systems in a
comparison category rating (CCR) test [28]: One with a straightfor-
ward WeLP-QCP based spectral modeling (QCP-based GIF with-
out frequency warping), and one with a WaLP-IAIF based spectral
modeling (iterative adaptive inverse filtering [8] based warped GIF
without time weighting). The used parameter orders and warping
coefficients were kept the same. The motivation for this subjective
listening test is to compare the WWLP-based vocal tract envelope es-
timation method with state-of-the-art LP-based approaches in ideal
conditions.

The results of the analysis/synthesis tests are presented in Fig-
ure 2. For the “Nancy” voice, the results show that the proposed
WWLP method has the best performance, whereas WaLP performs
significantly worse. For the “Nick” voice, the differences between
the different LP approaches are very small but WaLP has the over-
all best score. These results indicate that for the chosen p and λ,
the more high-pitched female voice suffers from the harmonic peak-
modeling problem demonstrated in Figure 1, whereas the male voice
is not affected by this problem.
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Fig. 2. Subjective listening test results (CCR test) on analy-
sis/synthesis quality for (a) “Nancy”, and (b) “Nick”
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Fig. 3. Subjective listening test results (AB test) on TTS samples.

4.2. Text-to-speech listening test

The subjective TTS quality of the proposed WWLP-QCP vocoder
was tested in an AB listening test against the previously proposed
GlottDNN vocoder (QMF-QCP) with linear band-wise process-
ing. In [11], QMF-QCP was reported to achieve state-of-the-art TTS
quality for the “Nick” voice when compared against the STRAIGHT
vocoder and the GlottHMM vocoder [3] while using a DNN-based
TTS system [29]. In the present study, the TTS system uses the long
short-term memory (LSTM) architecture presented in [30]. The
“Nick” voices were trained with 2,400 sentences, and the “Nancy”
voices were trained with 11,800 sentences of training data.

The results of the AB listening tests are presented in Figure
3. For the “Nick” voice, WWLP improves the quality over the
GlottDNN system, but for “Nancy”, the GlottDNN system is pre-
ferred. Unexpectedly, this result differs from that obtained in the
analysis/synthesis tests presented in Figure 2, where the WWLP
system was generally preferred for the “Nancy” voice.

5. DISCUSSION

A novel spectral modeling method was presented based on combin-
ing frequency-warped linear prediction and weighted linear predic-
tion. The new method, denoted as frequency-warped time-weighted
linear prediction (WWLP), generates auto-regressive envelope mod-
els that utilize auditory frequency-warping and avoids the excessive
modeling of harmonic peaks in the speech spectrum. These proper-
ties are ideally suited particularly for speech synthesis-oriented ap-

plications that rely on high-quality source-filter separation, such as
glottal vocoding.

WWLP was used as a vocal tract modeling technique in the
GlottDNN vocoder [11] and the system was evaluated in analy-
sis/synthesis and TTS experiments using one male voice (“Nick”)
and one female voice (“Nancy”). The results show that WWLP-
based spectral modeling gives better synthesis quality compared to
more conventional vocoding approaches which do not take advan-
tage of the combination of frequency-warping and time-weighting.
The improved quality, however, was not achieved consistently for
all the cases studied. In particular, the proposed new method did
not improve the TTS quality of the “Nancy” voice when compared
to a recently proposed baseline vocoder. We argue that this result,
which differs from that obtained in the analysis/synthesis evaluation,
might have been caused by using post-filtering settings that were not
properly tested before being used in the WWLP-based vocoder in
the present study. We believe that by modifying the post-filter to
better fit the WWLP-based vocoder, the proposed fusion approach
is expected to improve synthesis of female speech also in TTS.

Future plans with the WWLP-based GlottDNN vocoder include
a full release version with the features presented in [11]. In addition,
we will study the performance of the new vocoder in adaptation to
varying speaking styles.
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