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ABSTRACT

The key to the success of speech-based technology is an understand-
ing of human speech communication. While significant advances
have been made, a unified theory of speech communication that is
both comprehensive and quantitative is yet to emerge. In this paper
we approach speech communication from an information theoretical
perspective. Without relying on prior knowledge of speech produc-
tion, language, or auditory processing, we develop a new methodol-
ogy for measuring the information rate of speech. Instead we rely on
having recordings of multiple talkers saying the same utterance. In
general, our results are consistent with a linguistic understanding of
speech communication.

Index Terms— Information theory, speech communication,
talker variability

1. INTRODUCTION

Shannon’s information theory (IT) [1] provides a mathematical
framework for analyzing communication systems, regardless of
the systems implementation. There are two key concepts to IT.
The first concept is that the meaning of a message is irrelevant to
the engineering problem. Rather, the significant aspect is that a
transmitted message is one selected from a set of possible messages.
This view leads to a probabilistic approach. The second concept of
IT is that a message of low probability contains more information
than a message of high probability. IT is fundamental to the design
of wireless communications, cryptography, and data compression
systems [2]. There is no reason that IT cannot be applied to models
of human speech communication. Surprisingly, a relatively small
effort has been made to do so.

In the context of speech communication the most fundamental
question to ask is ‘’What is the maximum amount of information
that can be transferred from a talker to a listener per unit of time’?
The answer to this question is important because it gives a crite-
rion for assessing the effectiveness of speech-based communication
systems. Furthermore, it could suggest new algorithms for speech
enhancement, speech coding, and speech recognition.

Broadly speaking, two approaches to measuring the informa-
tion rate of speech exist: the linguistic approach, and the acoustic
approach. The linguistic approach describes speech as a sequence
of discrete perceptual units such as phonemes, words, or sentences.
Taking the average talking speed as 12 phonemes per second [3], and
using the English phoneme probabilities tabulated in [4], the lexical
information rate is approximately 50 b/s. When the dependencies of
the phonemes are accounted for the rate will be decreased further.

The lexical information rate does not include information about
talker identification, emotional state, and prosody. However, these
variables vary relatively slowly in time and contribute little to the

overall information rate. As an example, [5] estimated that the total
amount of talker-specific information (e.g., age, accent, sex) was
of the order of 30 bits. If speech with a duration of one minute is
considered, then accounting for talker-specific information increases
the information rate by only 0.5 b/s.

The acoustic approach to measuring the information rate de-
scribes speech communication using statistical models of acoustic
signals. By considering the bandwidth of the human auditory system
and the speech-to-noise ratio required for perfect intelligibility, [6]
concluded that the speech communication channel could support an
information rate of 20000 b/s. In contrast, by considering a simple
model of speech production, [5] estimated that the information rate
was of the order of 1500 b/s.

Why do information rates based on acoustic speech signals tend
to be orders of magnitude larger than estimates based on linguis-
tics? In [5], Fano hypothesized that talker variability behaves as a
type of internal noise that limits the effectiveness of communication.
Under this point of view, each talker encodes lexical information
into acoustic signals in a unique way. This idea was formalized in
[7], which coined the term ‘production noise’ and showed theoreti-
cally that the usefulness of a communication channel must saturate
either at the ‘message-to-production noise-ratio’ or at the speech-to-
enviromental-noise ratio, whichever is lower. The resulting relation
in [7] between intelligibility and environmental noise spectra closely
resembles that of the heuristically derived measures such as the ar-
ticulation index (AI), e.g., [8, 9], and the speech intelligibility index
(SII) [10, 11].

In this paper, we present a new method for measuring the infor-
mation rate of speech that is based on the effect of talker variabil-
ity. Unlike existing methodologies, our approach does not require
knowledge of language, speech production, or the human auditory
system. Instead we rely on data in which different talkers speak the
same utterance (referred to as a “chorus”). We generalize the speech
communication model proposed in [7] to include time-frequency
dependencies. To locate the relevant information encoded in acoustic
speech signals we use the information bottleneck principle [12, 13].
Thus, we find an upper bound on the rate in terms of a capacity of a
channel in the feature space found with the bottleneck. This upper
bound is around 100 b/s.

The remainder of this paper is organised as follows. In the
following section we describe an information theoretical model of
speech communication. Section 3 uses the model to measure the
information rate of speech and Section 4 concludes the work.

2. THEORY

The basic concept of our approach is to extract the information that
is consistent between talkers who speak the same utterance. To that
purpose we use a chorus of talkers. This enables us to distinguish
the production noise and the actual message. To make the approach
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work in practice, we must use a suitable representation of the signal.
We find that representation using the information bottleneck.

In the following, we denote all random variables with bold font
and their realizations in non-bold font. We characterize speech sig-
nals and the underlying message as stationary discrete-time random
processes. For example, the message process is written as {Mt} =
{Mt | t ∈ Z} where t is the time index.

2.1. Model of speech communication

Let us consider the nature of speech communication. First, a talker
randomly selects a message for transmission according to a proba-
bility distribution p{Mt}({Mt}) where {Mt} is the message. While
this is not part of our formalism, which is not based on linguistics,
the message may be thought to represent a sequence of phonemes,
words, sentences, or neural states.

The talker encodes the message into an acoustic speech signal,
{St}, according to a conditional probability distribution
p{St}|{Mt}({St}|{Mt}). In this way, the variability of speech
produced by different talkers is incorporated into the model.

We define a random chorus as a set of J speech signals {ZM} =

{{SM,t}(1), {SM,t}(2), · · · , {SM,t}(J)} where each speech signal
in the set contains the same message. Here, the subscript M in-
dicates a particular message. A chorus-based estimate of the mes-
sage is defined by {M̃t} = f({ZM}) + {Nt}, where f(·) is a
deterministic function and {Nt} is a small amount of multivari-
ate Gaussian noise that is statistically independent to {ZM}. This
regularization noise corresponds to the situation that the message is
estimated from {ZM} with some uncertainty, and ensures that the
mutual information between the chorus and the message estimate is
bounded from above. Depending on the estimator f(.), {M̃t} could
lie in a different domain to {Mt}. However, an ideal estimator will
result in a one-to-one relationship between the domain of {M̃t} and
the domain of {Mt}. We call the domain of {M̃t} the message
articulation space (MAS). Signal components that lie outside of the
MAS are considered irrelevant to the communication process.

2.2. The information bottleneck

A natural objective for f(·) is that it minimizes the information
bottleneck [12, 13]

f∗ = arg min
f
I({ZM}; {M̃t})− βI({SM,t}; {M̃t}), (1)

where I({ZM}; {M̃t}) is the mutual information rate between the
chorus and the chorus message estimate, I({SM,t}; {M̃t}) is the
mutual information rate between the speech and the message esti-
mate, and β is a Lagrange multiplier.

On the one hand, optimizing the information bottleneck leads
to an operator f(·) that creates a compressed description of the
chorus as it minimizes I({ZM}; {M̃t})). Minimizing this term
gives the estimator a disincentive to simply accumulate in the
message estimate all speech signals in the chorus, or even to
select a single speech signal as the message estimate. On the
other hand, optimizing the bottleneck maximizes the information
shared between the message estimate and speech carrying the same
message. Note that the mutual information rate I({SM,t}; {M̃t})
cannot exceed the true message information rate in the signal as
the speech and the chorus used in the estimator are independently
drawn from p{St}|{Mt}({St}|{Mt}). Thus, overweighting this
term (β � 1) will not result in an increase in its value. Such

overweighting of the second term also prevents that the optimal
estimator would be the trivial estimator that always maps to zero.

In practice it is difficult to evaluate (1) due to computational
complexity. However, given a finite set of candidate estimators f(·)
we can evaluate the information bottleneck for each f(·) and select
the f(·) that achieves the lowest meaningful bottleneck. In this way
the information bottleneck acts as a criterion for evaluating how
successful f(·) is at estimating the message conveyed by the chorus.

We confine the estimator f(·) to be of the form

f({ZM}) =
1

J

∑
j

g({SM,t}(j)), (2)

where g(·) is a surjective mapping onto the MAS. Note that this form
indeed can not store all speech in the chorus.

2.3. Comparison of message estimators

We now provide some examples for the mappings g(·) from the
acoustic signal representation. First we consider the case where g(·)
is the identity function. Then, asymptotically with increasing J , we
have

lim
J→∞

{M̃t} = {Nt}+ lim
J→∞

1

J

∑
j

{SM,t}(j)

= {Nt}+ {E[SM ]t}
= {Nt}+ {0t},

(3)

where E[·] is the expectation operator. The third equality follows
because acoustic waveforms produced by different talkers are sta-
tistically independent. Since the regularization noise is drawn inde-
pendently, we have that asymptotically I({ZM}; {Nt}) = 0 and
that I({SM,t}; {Nt}) = 0, and hence the information bottleneck is
zero.

As a second example, we consider the case where g(·) is
the short-time Fourier transform (STFT) denoted g({SM,t}) =
{S′M (ω)t}, where ω is the frequency index. Then we have,

lim
J→∞

{M̃t} = {Nt}+ lim
J→∞

1

J

∑
j

{S′M (ω)t}(j)

= {Nt}+ {E[|S′M (ω)|]E[ej∠S′
M (ω)]t}

= {Nt}+ {E[|S′M (ω)|] · 0t}
= {Nt}+ {0t},

(4)

where we modeled the phase of the STFT of a speech signal as a
uniformly distributed random variable between−π and π that is sta-
tistically independent to the magnitude [14]. Similarly to the identity
function, the STFT results in an information bottleneck equal to zero.

As a third example, we consider the case where g(·) is the spec-
trogram transform defined as the squared magnitude of the STFT.
We denote the spectrogram as g({SM,t}) = {X′M,t}. Here, X′M,t

is a vector where each element describes the power at a particular
frequency location. Then,

lim
J→∞

{M̃t} = {Nt}+ lim
J→∞

1

J

∑
j

{X′M.t}(j)

= {Nt}+ {E[X′M ]t}
≈ {E[X′M ]t},

(5)

which results in a non-zero time-varying process that depends on an
underlying message. In this case both mutual information rate terms
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in the bottleneck are non-zero. Hence, by the overweighting β, the
bottleneck will have a negative value.

As a fourth example, consider the logarithm of the spectrogram.
In practice we have found that it results in a more negative informa-
tion bottleneck than the spectrogram. The speech-production per-
spective provides an explanation: in the logarithmic domain the exci-
tation information in the speech signal ends up in a separate, additive
term that averages to zero across talkers [15].

Our approach to finding the information rate of speech does not
require knowledge about speech production or the human auditory
system: our search is for a representation that minimizes the bot-
tleneck. This does not preclude us from evaluating a representation
inspired by auditory models as an educated guess:

g({SM,t}) = {log(FX′M )t}, (6)

where F is a matrix that represents an auditory filterbank and the
logarithm is applied elementwise. We set each row of F to be the
squared magnitude response of a gammatone filter with the center
frequency and bandwidth set according to the equivalent rectangular
bandwidth scale (ERB) [16]. Of all the examples so far, we found
that (6) gave the lowest bottleneck. Hence, we will use the auditory-
spectra defined by (6) as our representation of speech. The fact
that (6) gives a low bottleneck supports the results of [17], which
suggested that the acoustic structure of speech might be adapted to
the coding capability of the mammalian auditory system.

2.4. Computing the information rate of speech

We now derive the channel capacity for the feature space developed
in the previous section. We model speech as a multi-dimensional
ergodic stationary discrete-time random process that is described by

{Xt} = {M̃t}+ {P̃t}, (7)

where Xt, M̃t, P̃t ∈ RN are column vector random variables that
represent auditory-spectra at time t ∈ Z. Herein Xt is the auditory-
spectra of the speech, M̃t the estimated message, and P̃t the esti-
mated production noise. Production noise was first introduced in [7]
and has since been used to incorporate the effect of talker variabil-
ity in speech intelligibility prediction [15] and speech enhancement
[18, 19]. We assume that M̃t and P̃t are statistically independent
and that P̃t is zero-mean and multivariate Gaussian.

The mutual information rate between the speech and the mes-
sage describes the effectiveness of communication. For vector pro-
cesses consisting of a sequence of speech vectors, {Xt}, and a se-
quence of estimated message vectors {M̃t} the mutual information
rate is

I({Xt}; {M̃t}) = lim
k→∞

1

k
I(Xk; M̃k), (8)

where Xk = [(X1)T , (X2)T , · · · , (Xk)T ]T ,
M̃k = [(M̃1)T , (M̃2)T , · · · , (M̃k)T ]T , T denotes the transpose,
and I(Xk; M̃k) is the mutual information. Note that Xk is a kN×1
random vector obtained by stacking k consecutive speech vectors
and similarly for M̃k.

The advantage of using the mutual information rate rather than
the mutual information is that time-dependencies between succes-
sive spectra are accounted for. If time-dependencies span no more
than L samples, i.e., Xt is independent to Xt+L, then the mutual
information rate reduces to

I({Xt}; {M̃t}) =
1

L
I(XL; M̃L)

=
1

L

(
h(XL)− h(P̃L)

)
,

(9)

where h(·) denotes differential entropy.
We recall that signal components that do not lie in the MAS do

not contribute to the information rate. Exploiting this fact, we per-
form a dimensionality reduction by applying principal component
analysis (PCA) to the stacked speech vectors. Given the relative
scaling of the various dimensions, PCA uses a mean-square error
criterion to discard dimensions that contribute the least variance.
This is particularly reasonable for the Gaussian case because mu-
tual information and differential entropy depend only on second-
order statistics. Let RML denote the covariance matrix of M̃L.
An orthogonal basis for the MAS can be obtained from an eigen-
decomposition:

RML = UΛUT , (10)

where the columns of U are the unit-magnitude eigenvectors of
RML and Λ is a diagonal matrix of the corresponding eigenvalues.
Dimensionality reduction is then performed by removing eigen-
vectors from U with small eigenvalues. An orthogonal projection
matrix that projects vectors onto the MAS is then given by

A = UUT . (11)

We can now define the channel capacity. It is defined as the
maximum mutual information rate over all possible probability dis-
tributions of M̃L. For the multivariate Gaussian additive noise case
with time-correlations no longer than L samples, we have that

C =
F

2L

V∑
v=1

log2

λv

ψv
, (12)

where F is the sample rate of the process in Hz, V is the number of
eigenvectors in U , λv is the v’th largest eigenvalue of RXL and ψv

is the v’th largest eigenvalue of RPL , where RXL is the covariance
matrix of XL after projecting the stacked speech vectors onto the
MAS, and RPL is the covariance matrix of P̃L after projecting the
stacked production noise vectors onto the MAS. The above equa-
tion can be obtained by first noting that the multivariate Gaussian
distribution is the maximum entropy distribution for a given RXL ,
and then substituting the expressions for the entropy of multivariate
Gaussian distributions into (9).

3. EXPERIMENTS

We now describe our experiment for measuring the capacity of the
speech communication channel. First we describe our implementa-
tion and then we present our results.

3.1. Implementation

For our experiment, we create a chorus using data from the CHAINS
speech corpus [20]. The CHAINS speech corpus includes easy read-
ing material in English spoken by J = 36 talkers including 18
females, and 18 males. All speech signals were downsampled to a
sampling rate of fs = 16 kHz and normalized to have unit variance.
Additionally, a dynamic time-warping algorithm [21] was applied to
all signals in the chorus to ensure that the signals contained the same
lexical information at a given time.

A sequence of auditory-spectra was computed for each signal in
the chorus using a STFT with a 512-point Hann analysis window and
75% overlap. This gives a frame rate of F = 125 Hz. A gammatone
filterbank that included 64 filters linearly spaced on the ERB-rate
scale was then applied. We denote the sequence of spectra for the
j’th talker {Xt}(j).
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Fig. 1. The 100 largest eigenvalues of R̂ML . The red line at
V = 0.005λmax indicates the number of eigenvectors used.

The message and the production noise were estimated according
to

{M̃t} =
1

J

∑
j

{Xt}(j) (13)

and
˜{Pt}

(j)
= {Xt}(j) −

1

J − 1

∑
l,l6=j

{Xt}(l), (14)

respectively. The message estimate (13) is equivalent to (2) and
the production noise estimate is essentially a rearrangement of
(7). From these estimates, stacked vectors were formed with
L = 1, 2, 4, 6, 8, 10, 20, 30, 40. This corresponds to assuming
zero time-dependencies beyond 8, 16, 32, 48, 64, 80, 160, 240, and
320 ms.

The MAS eigen-basis was found by computing an eigen-
decomposition of the sample covariance matrix, R̂ML . The orthog-
onal projection matrix A was obtained by discarding eigenvectors
with eigenvalues less than V = 0.005θmax where θmax is the
maximum eigenvalue. The speech vectors and the production noise
vectors were projected onto the MAS using A and the capacity of
the speech communication channel was found by evaluating (12).

3.2. Results

Figure 1 shows the largest 100 eigenvalues of R̂ML for L = 40. The
plot shows that V = 46. This implies that the MAS can be described
using a basis of 46 eigenvectors.

Figure 2 shows the result of projecting speech onto the MAS.
We see that features such as pitch are suppressed, and that tempro-
spectro modulations attributed to the shape of the vocal-tract are
preserved. This is consistent with the notion that pitch contains no
lexical information [22]. In general, the MAS projection acts as a
low-pass filter that smooths the spectra. This behavior is consistent
with [23] where it was found that intelligible speech could be syn-
thesized from bandpass-filtered log-spectra.

Figure 3 shows the capacity of the speech communication chan-
nel as a function of L. We see that the capacity is approximately 100
b/s, which is comparable to the lexical information rate of speech
of 50 b/s when phonemes are considered. We find that the time-
dependencies are negligible for L > 10. This means that time-
dependencies tend to last 80 ms, which is consistent with the average
duration of a phoneme (e.g., [24]).

4. DISCUSSION & CONCLUSION

We developed an information theoretical model of speech commu-
nication without assuming any knowledge of speech production,
language, or auditory processing. A compressed representation of
speech that retained relevant linguistic information was determined
by applying the information bottleneck principle to a chorus of

64

128

192

256

0 1 2 3 4

time (seconds)

16

32

48

64

Fig. 2. Top: a sequence of log-spectra produced by a talker. Bottom:
the same signal projected onto the message articulation space. The
bandwidth of the signals is 8 kHz.

speech signals. From a small set of candidate representations
we selected the representation that minimized the information
bottleneck. The selected representation was inspired by the human
auditory system. Based on this representation, the capacity of the
speech communication channel was measured.

The capacity of 100 b/s of the speech communication channel
that we found is approximately a factor of two larger than speech
information rate estimates based on linguistic models. We believe
that this factor of two can be attributed to assigning non-zero prob-
abilities to all linear combinations of eigenvectors that define the
MAS. In practice, humans cannot physically produce all linear com-
binations of the eigenvectors. For example, if the spectrum of one
English phoneme is added to the spectrum of a different English
phoneme, we do not, in general, obtain the spectrum for a third En-
glish phoneme. Moreover, the capacity of the MAS includes sounds
associated with different dialects, which do not add to the speech
information rate. We hypothesize that replacing the multivariate
Gaussian model with a Gaussian Mixture Model could resolve this
issue. If such a mixture model was used, linear combinations of
eigenvectors that do not occur in the chorus would be assigned zero-
probability. This would reduce the entropy rate of the message esti-
mate, causing the capacity of the speech communication channel to
drop.

We decomposed the spectral representation that minimizes the
bottleneck into eigenvectors that span time and frequency by stack-
ing successive spectra. This made it possible to evaluate the capacity
of speech communication. Although we did not focus on creating a
basis suitable for resynthesis, we are able to reconstruct intelligible
speech signals based on the smooth auditory-spectra obtained from
projections onto the MAS like the one shown in Figure 2. In part this
is due to the fact that the smooth functions in the logarithmic domain
can display relatively sharp transitions in the linear domain.
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Fig. 3. The capacity of the speech communication channel as
function of time-correlation duration.
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