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ABSTRACT
Pitch tracking in noisy speech is a challenging task as tem-
poral and spectral patterns of the speech signal are both cor-
rupted. This paper proposes long short-term memory (LSTM)
based methods for pitch probability estimation. Two archi-
tectures are investigated. The first one is conventional LSTM
that utilizes recurrent connections to model pitch dynamics.
The second one is two-level time-frequency LSTM, with the
first level scanning frequency bands and the second level con-
necting the first level through time. The Viterbi algorithm
then takes the probabilistic output from LSTM to generate
continuous pitch contours. Experiments show that both pro-
posed models outperform a deep neural network (DNN) based
model in most conditions. Time-frequency LSTM achieves
the best performance at negative SNRs.

Index Terms— Pitch detection, long short-term memory,
time and frequency modeling

1. INTRODUCTION

Pitch of human speech refers to the fundamental frequency of
vocal fold vibrations. A reliable estimate of pitch is useful for
various applications, including automatic speech recognition
[3], speech separation [23] and emotion recognition [15].

Although many algorithms have been proposed for pitch
tracking [2][20], they do not produce consistent results when
speech is severely interfered by noise. The difficulty of pitch
tracking in noise stems from the fact that both temporal conti-
nuities and harmonic patterns are corrupted. Recently, many
studies try to address the noise-robustness issue for pitch
tracking, and most of them consist of two stages. In the fist
stage, pitch candidates or pitch probabilities are estimated
for each time frame of speech using temporal, spectral, or
spectrotemporal domain information [23]. Temporal domain
methods analyze the periodic cue of speech; e. g., YIN [4]
proposed a number of modifications to the autocorrelation
method to improve pitch estimation accuracy. Spectral do-
main methods are based on harmonic modeling. For instance,
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PEFAC [7] used non-linear amplitude compression and a
comb-filter to suppress noise in the spectrogram, and se-
lected pitch candidates from harmonic peaks. Han and Wang
[9] fed spectral features to a deep neural network (DNN)
and a recurrent neural network (RNN) to predict frame-level
probabilities of pitch states. Spectrotemporal methods first
decompose the signal into a series of sub-bands, and then
perform temporal analysis on each frequency channel. For
example, Wang and Hansen [22] decomposed speech into
overlapped time-frequency segments, and derived pitch can-
didates and likelihood scores for each segment. After the
estimation of pitch candidates and probabilities, the second
stage integrates local pitch clues into continuous pitch tracks
using dynamic programming [7] or hidden Markov models
(HMMs) [25].

Given that speech has long-term dependency in the time
domain, it is natural to exploit temporal dynamics for pitch
tracking. However, most pitch tracking algorithms only
analyze speech signals within short-time windows in the
first stage, resulting in inaccurate pitch estimates at noise-
dominant frames. To address this problem, Han and Wang [9]
proposed to use a standard RNN to estimate pitch probabili-
ties over time. Such RNNs are designed to model sequential
data, but they suffer from the vanishing and exploding gra-
dient problem [1], and can not propagate information over
a long span. Long short-term memory (LSTM) RNNs [11]
use gates to stabilize gradient propagation, and are shown
to be good at modeling long-term dependencies in many ap-
plications such as automatic speech recognition [8] [17] and
machine translation [19].

In this study, we extend the RNN based pitch tracking
framework, and propose to use LSTM to model the poste-
rior probability that a frequency bin (pitch state) is pitched
given frame-level log-spectrogram features. Another impor-
tant characteristic of voiced speech is that its harmonics are
evenly spaced in frequency. When some frequency bands are
contaminated by noise, we can still estimate the fundamental
frequency from other reliable bands. To leverage this observa-
tion, we further apply a two-level LSTM structure. The first
level is frequency domain LSTM (F-LSTM) that scans seg-
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ments of log-spectrogram along the frequency axis to detect
harmonic patterns. The second level is time domain LSTM
(T-LSTM), which takes the output of F-LSTM as input, and
models pitch probabilities through time. The overall struc-
ture is denoted by time-frequency LSTM (TF-LSTM) in this
study. Recently, a similar TF-LSTM network has been shown
to outperform conventional LSTM in an automatic speech
recognition task [17]. Once all frame-level pitch probabili-
ties are derived, we use the Viterbi algorithm [5] to generate
continuous pitch contours.

The rest of the paper is organized as follows. The pro-
posed system is described in the next section. In Section 3,
we present experimental results and comparisons. A conclu-
sion is given in Section 4.

2. SYSTEM DESCRIPTION

The proposed pitch tracking algorithm consists of two stages:
pitch probability estimation and Viterbi decoding.

In the first stage, we extract the log-spectrogram feature
yt from a noisy utterance sampled at 16 kHz, where t denotes
the frame index. Neural networks then use yt as input to esti-
mate the posterior probability of pitch states p(xt|yt), where
xt denotes the pitch state at frame t. We quantize the fre-
quency range 60 to 404 Hz into 67 bins (s1, s2, ..., s67) using
24 bins per octave in a logarithmic scale [9]. Each si corre-
sponds to a state in xt. In addition, a non-pitched state s0 is
incorporated into xt to represent unvoiced speech or silence.
p(xt = si|yt) equals 1 if the groundtruth pitch is in the fre-
quency bin of si, and 0 otherwise. We introduce a DNN as a
baseline model in Section 2.2 . LSTM and TF-LSTM are de-
scribed in Section 2.3 and Section 2.4. In the second stage, we
use the Viterbi algorithm to connect frame-level probabilities
and track pitch through time.

2.1. Feature extraction

The feature used in study is based on log-spectrogram. To get
this feature, the signal is first divided into 32 ms frames with
a 10 ms frame shift. We then apply a Hamming window to
each frame and derive the spectrogram using 1024-point FFT.
Lastly, we compute the logarithm of the amplitude spectrum,
and pick bins 2 to 129 (corresponding to a frequency range up
to 2000 Hz) as the 128-dimensional feature for each frame.
We do not pick all bins in the spectrogram as the energy of
high frequency harmonics is relatively low, and the frequency
range up to 2000 Hz covers at least 5 harmonics of human
speech, enough for continuous pitch tracking.

Since neighboring frames contain useful information, we
splice a 15-frame window of features as the DNN’s input. For
LSTM and TF-LSTM, although the history of input is stored
in their memory cells, it is still helpful to apply a context win-
dow so that they can receive richer input information at each
time step. Taking the model size and computational cost into

consideration, we splice a 7-frame window for the input of
LSTM and TF-LSTM.

2.2. DNN based pitch probability estimation

We first utilize a DNN as a baseline model to estimate the pos-
terior probability of pitch states when the frame-level feature
vector is given, i. e., p(xt|yt). The DNN has four hidden lay-
ers, each with 1600 rectified linear units [6]. The output layer
contains 68 soft-max units, corresponding to the number of
pitch states. The cross-entropy cost function, mini-batch gra-
dient descent, Adam optimization algorithm [14] and dropout
regularization [10] are used during training. The initial learn-
ing rate is 0.001, and a learning rate decay of 0.7 each epoch
is used. The training stops after 30 epochs.

2.3. LSTM based pitch probability estimation

To better encode the temporal dependency of human speech,
we use LSTM for pitch probability estimation in this subsec-
tion. LSTM is composed of a series of recurrently connected
memory blocks [11]. Each memory block has a memory cell
which stores the temporal state of the network, an input gate
which controls the amount of input activation added to the
memory cell, a forget gate which adaptively resets the mem-
ory cell and an output gate which controls the amount of in-
formation passed from the memory cell to the output. In this
work, we followed the LSTM architecture in [26]:

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ct = ft�ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (3)

ot = σ(Wxoxt +Whoht−1 + bo) (4)

ht = ot�tanh(ct) (5)

where it, ft, ct and ot denote the input gate, forget gate, mem-
ory cell and output gate. xt and ht denote the input and output
of the memory block. W terms and b terms denote different
weight matrices and biases. σ is the logistic sigmoid function.
� represents element-wise multiplication.

Our LSTM has four hidden layers, each with 512 hidden
units. The output layer is a soft-max layer with 68 units. The
number of parameters in LSTM is close to that in the baseline
DNN. To train LSTM, we use a backpropagation through time
(BPTT) step of 100. The learning rate decay is set to 0.45 per
epoch. Other training recipes follow the baseline DNN.

2.4. TF-LSTM based pitch probability estimation

In this subsection, we introduce time-frequency LSTM (TF-
LSTM) which models temporal and spectral dynamics of
speech simultaneously. A diagram of proposed TF-LSTM
is shown in Fig. 1. The intention of this architecture is to
first use F-LSTM to scan different frequency bands of the
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Fig. 1: Diagram of TF-LSTM.

log-spectrogram, where useful pitch information can be ex-
tracted from relatively clean bands, and will propagate along
the frequency axis to further affect subsequent noisy bands.
The output of F-LSTM is then collected and fed to T-LSTM
to track pitch through time. A similar network has been
applied to automatic speech recognition tasks and shown to
outperform DNN based and conventional LSTM based neural
networks [17].

To implement TF-LSTM, we first divide the 128×7-
dimensional feature yt along the frequency axis to get over-
lapped frequency segments. Each frequency segment con-
tains 24×7 units, and has 16×7 overlapped units with each
neighboring frequency segment. In other words, the stride
of frequency segments is 8. F-LSTM, which is one layer
bidirectional LSTM with 256 units per direction, takes all
frequency segments in a frame as input. Therefore F-LSTM
is unrolled on the frequency axis (128 − 24)/8 + 1 = 14
times at each frame. All parameters in F-LSTM are cho-
sen from a development set. The output of F-LSTM is then
fed into T-LSTM. Because we have 256×2×14 output units
from F-LSTM at each frame, it’s inefficient to directly use
them in T-LSTM. We thus propose two methods to solve the
problem. The first method only keeps the last outputs in the
F-LSTM sequence (red dashed arrows in Fig. 1) for T-LSTM,
denoted by TF-LSTM1. Here the last outputs are treated as
an embedding of the log-spectrogram. The second method
concatenates all output units in F-LSTM and uses a 512-unit
linear transformation layer to reduce its dimensionality, de-
noted by TF-LSTM2. We will compare these two methods
in Section 3. T-LSTM has three 512-unit hidden layers and

a 68-unit soft-max output layer. Other details and training
recipes follow conventional LSTM.

2.5. Viterbi decoding

After the estimation of p(xt|yt), we use the Viterbi algorithm
[5] to connect all probabilities along time. The hidden state in
the Viterbi algorithm corresponds to xt, and the observation
corresponds to yt. We use the training data to compute prior
probabilities p(xt = si) and transition matrices. Emission
probabilities can be computed using the estimated posterior
probabilities divided by the prior p(xt = si). The Viterbi
algorithm generates a sequence of most likely pitch states,
which is then converted to mean frequencies of corresponding
frequency bins. In the end, a three-frame moving average
window is applied to smooth pitch estimates.

3. EVALUATION RESULTS AND COMPARISONS

We use the Mocha-TIMIT database [24] for experimen-
tal comparisons. This database consists of 460 utterances
from both a male and a female speaker. Because the male
speaker is less challenging for pitch tracking tasks, we use
the female speaker in the following experiments for speaker-
dependent learning. The training set is created by mixing
400 utterances from the female speaker with 10,000 noises
from a sound-effect library (available at http://www.sound-
ideas.com). Each clean utterance is mixed 100 times with a
random segment of a random noise at a random SNR from
-5 to 5 dB. The total duration of the training set is 44 hours.
The test set includes 20 unseen utterances from the Mocha-
TIMIT female speaker. Six noises, i. e., babble noise [12],
factory noise [21], speech shape noise (SSN), cocktail-party
noise [13], crowd playground noise [13] and crowd music
noise [13], are used for test, and all of them are unseen during
training. Each test utterance is mixed with the six test noises
at -10, -5, 0, 5 and 10 dB, resulting in a total of 600 test
mixtures. The groundtruth pitch is derived by applying the
RAPT [20] algorithm on laryngograph signals. We manu-
ally remove erroneous pitch in unvoiced regions to further
improve the quality of the groundtruth pitch.

We use two metrics to evaluate pitch estimates: detec-
tion rate (DR) and voicing decision error (VDE) [16]. DR
indicates the percentage of correctly estimated voiced frames.
VDE computes the percentage of frames that are misclassified
in terms of pitched and unpitched decision:

DR =
N0.05

Np
, VDE =

Nn→p +Np→n

N
(6)

Here N0.05 is the number of frames whose estimated pitch
deviates less than 5% from the groundtruth pitch. Nn→p and
Np→n are the number of frames misclassified as pitched and
unpitched respectively. Np is the number of pitched frames,
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Table 1: Comparison of approaches in terms of DR.

SNR (dB) -10 -5 0 5 10

PEFAC 0.373 0.555 0.657 0.696 0.714
Han and Wang DNN 0.434 0.635 0.728 0.755 0.756
Han and Wang RNN 0.406 0.633 0.727 0.755 0.763

Proposed DNN 0.664 0.861 0.934 0.953 0.958
Proposed LSTM 0.706 0.876 0.938 0.956 0.959

Proposed TF-LSTM1 0.714 0.880 0.937 0.954 0.958
Proposed TF-LSTM2 0.711 0.878 0.938 0.954 0.957

Table 2: Comparison of approaches in terms of VDE.

SNR (dB) -10 -5 0 5 10

PEFAC 0.337 0.262 0.192 0.142 0.112
Han and Wang DNN 0.295 0.221 0.149 0.103 0.095
Han and Wang RNN 0.301 0.226 0.165 0.120 0.108

Proposed DNN 0.247 0.131 0.062 0.047 0.041
Proposed LSTM 0.228 0.119 0.063 0.048 0.043

Proposed TF-LSTM1 0.221 0.116 0.059 0.046 0.042
Proposed TF-LSTM2 0.204 0.112 0.061 0.047 0.042

and N is the total number of frames. Higher DR and lower
VDE indicate better pitch estimates.

We compare our methods with two state of the art pitch
tracking algorithms: PEFAC [7] and Han and Wang [9]. PE-
FAC is a representative unsupervised approach that performs
relatively well in low SNR conditions. Han and Wang’s ap-
proach used the same DNN/RNN-HMM framework as ours,
and was trained on a speaker-independent dataset. Two of
Han and Wang’s training noises are seen in our test set.

Table 1 and Table 2 list the DR and VDE of different ap-
proaches, where all values are averaged across six noise types.
As shown in the tables, all supervised learning approaches
produce better results than PEFAC across all SNRs. A stan-
dard RNN was used by Han and Wang to model temporal
dynamics, but it does not outperform their DNN based ap-
proach in most cases, which is due to the fact that such RNNs
are more difficult to train and can not model long-term ef-
fects. By virtue of the large training set, speaker-dependent
training [18] and better training recipes, our proposed meth-
ods show significant improvement over Han and Wang’s ap-
proach. When the SNR is non-negative, all proposed methods
generate exceptionally accurate pitch estimates while making
few voicing decision mistakes. When it comes to negative
SNRs, the LSTM based method produces clearly higher DRs
and lower VDEs than the DNN based method, indicating that
the capacity of sequence modeling makes LSTM better at pro-
cessing very noisy speech. TF-LSTM1 and TF-LSTM2 both
outperform LSTM at negative SNRs. They yield comparable
results in terms of DR, and TF-LSTM2 achieves a VDE of
0.204 at -10 dB, significantly lower than all other approaches.
Such improvement is contributed to the frequency scanning
module in TF-LSTM, which makes the model better at distin-
guishing unpitched signals from voiced speech.
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Fig. 2: DR and VDE for (a) babble noise, (b) factory noise,
(c) SSN, (d) cocktail-party noise, (e) crowd playground noise,
(f) crowd music noise.

Fig. 2 compares the performance of the proposed DNN,
LSTM and TF-LSTM2 in different noises, which is pretty
consistent with the results in Table 1 and 2. The major im-
provement of LSTM and TF-LSTM2 comes from negative
SNRs. LSTM outperforms the DNN in most negative SNR
conditions. TF-LSTM2 generates similar DR as LSTM, but
consistently lower VDE in all cases.

4. CONCLUSION

In this study, we have introduced LSTM for robust pitch
tracking in noisy speech. Both conventional LSTM and two-
level TF-LSTM are utilized to estimate probabilistic pitch
states. TF-LSTM first uses F-LSTM to scan harmonic pat-
terns, and then uses T-LSTM to connect frequency-domain
activations. Due to the capacity of sequence modeling, both
LSTM based models outperform a DNN based model. TF-
LSTM further reduces the VDE of conventional LSTM by
10% at -10 dB. In the future, we will incorporate sub-band
features into TF-LSTM. We will also perform speaker-
independent training to evaluate how well TF-LSTM gen-
eralizes to unseen speakers.
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