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ABSTRACT
Leveraging upon transfer learning, we distill the knowledge in a con-
ventional wide and deep neural network (DNN) into a narrower yet
deeper model with fewer parameters and comparable system perfor-
mance for speech enhancement. We present three transfer-learning
solutions to accomplish our goal. First, the knowledge embedded in
the form of the output values of a high-performance DNN is used
to guide the training of a smaller DNN model in sequential trans-
fer learning. In the second multi-task transfer learning solution, the
smaller DNN is trained to learn the output value of the larger DNN,
and the speech enhancement task in parallel. Finally, a progressive
stacking transfer learning is accomplished through multi-task learn-
ing, and DNN stacking. Our experimental evidences demonstrate 5
times parameter reduction while maintaining similar enhancement
performance with the proposed framework.

Index Terms— Transfer learning, model compression, model
stacking, multi-task training, speech enhancement

1. INTRODUCTION

While deep neural networks (DNNs) have achieved the state-of-the-
art performances in many tasks, including automatic speech recog-
nition (ASR) [1][2] speech enhancement [3][4], image classification
[5] and object detection [6], the large-sized parameters in the mod-
els take up considerable memory for storage. The complex models
also require a lot of time and power to perform matrix multiplication
during prediction. These two factors pose key challenges to deploy
such models on embedded systems, on which there is often limited
memory, power, and bandwidth. Yet the interests in transferring the
learned models to low-resource platforms is keen [7, 8, 9] due to the
ubiquity of smart mobile devices. Most studies on this topic aim
to reduce the size of the DNN while maintaining a similar accuracy
or quality of prediction. For example, network analysis and trans-
formation are attempted in [7, 8] to remove redundant parameters
in image classification and handwritten digit recognition. A small-
footprint ASR system is implemented on a cell phone in [9]. It is
natural to extend these ideas to speech enhancement that could be
embedded in local processing in mobile devices.

Transfer learning, or learning with “knowledge transfer” [10],
is a machine learning paradigm that can play a key role in model
compression [11]. Indeed, it focuses on sharing/transfer knowledge
among/across different domains/tasks, and often uses knowledge
learned previously to solve new problems faster or with better so-
lutions. In [12], for example, a multi-task learning approach [13]
exploits the knowledge acquired in a more general setting (phone
classification) to address a more specific, and difficult task (senone
classification). In maximum a posteriori (MAP) speaker adaptation

[14], the key idea is to transfer knowledge from a source to a target
model by condensing all information about the source domain into
a prior density of the model parameters. This allows us to find the
most probable model with respect to the target data under MAP.
Other successful transfer learning applications are available in the
literature, and the readers are referred to [10] for details.

In this paper, we use transfer learning as a viable and effective
vehicle to compress the function that is learned by a large DNN
into a much smaller neural architecture that has comparable perfor-
mance and is faster to execute at run-time. In particular, we devise
three different model compression solution based on transfer learn-
ing with the goal to reduce the size of a highly accurate, wide DNN
into a narrower yet deeper DNN with a comparable accuracy. In the
first approach, we sequentially transfer the generalisation ability of a
cumbersome model (teacher) to a smaller model (student) by using
the output values generated by the cumbersome model for the train-
ing set as “targets” for the smaller model. This approach is inspired
by [11] and [15]. In [11], the original (often small) training set is
used to train an ensemble of neural networks, which are in turn em-
ployed to label a large unlabeled data set. A single neural network
is then trained on this much larger, ensemble labeled, data set. In
our approach, we do not use an ensemble of neural networks as pri-
mary source of knowledge, and teacher and student DNNs are built
on the same training data. In contrast to [15], we address a regres-
sion rather than a classification task. In the second solution, the stu-
dent’s architecture is modified by adding an auxiliary output layer to
the original one. The auxiliary output layer is latched to the output
of the teacher, and knowledge distillation is accomplished through
a multi-task transfer learning approach [13]. A multi-stage trans-
fer learning approach is finally devised by combining a progressive
approach with multi-task learning. In doing so, we progressively in-
crease the deepness of the student while reducing its complexity, in
terms of size, and attaining a similar accuracy with the teacher.

We evaluate our proposed solutions on speech enhancement,
which has attracted a large amount of research attention in recent
years because of the growing challenges in many real-world appli-
cations, including mobile speech communication, hearing aids and
robust ASR [16]. In these tasks, DNNs have been proven to sig-
nificantly outperform other conventional techniques [4]. Our experi-
mental evidence demonstrates that a 5 times parameter reduction can
be achieved while maintaining a similar enhancement performance
with the proposed framework.

2. RELATED WORK

2.1. Speech Enhancement with Deep Neural Networks
DNN-based regression to reconstruct clean speech magnitude spec-
trum is introduced in [4]. In the training phase, a large training set
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of synthesized noisy speech is trained to minimize the mean square
error between the log-power spectral (LPS) features of target clean
speech and that of enhanced speech. During enhancement, the LPS
features of noisy speech pass through the trained DNN to obtain
the enhanced LPS features. Assuming that phase is not as sensi-
tive to human perception, enhanced speech is synthesized from the
predicted magnitude and the original noisy phase. DNNs are also
stacked [17] to create multi-context networks in order to leverage
the contextual information more thoroughly to predict ideal time-
frequency masks and clean speech with good quality.

2.2. Transfer Learning
Transfer learning is a machine learning paradigm that relays the
knowledge acquired in one task to another instead of training the
second system independently. As an emerging field of active re-
search, transfer learning could be further divided into many topics
depending on the similarity between the source and target domains,
the closeness of the source and target tasks, or number of target tasks
[10]. When both the source and target domains are in a common
feature space sharing similar marginal probability distributions, and
output spaces are alike, it is known as homogeneous transfer learn-
ing [18]. In the case where the domain features are different (either
in mismatched feature space or dissimilar probability distribution),
or the task have changed, knowledge needs to be transferred across
domain/tasks, hence heterogeneous transfer [10]. Depending on the
number of tasks to be learned simultaneously during the transfer, one
could categorize it into sequential or multi-task learning [13].

2.2.1. Teacher-student Networks
Prior efforts in transferring knowledge from a larger teacher network
to a smaller student network include [15] in ASR and [19] in image
classification. In both tasks, the teacher’s knowledge is embedded in
the posterior distribution at the output layer of the DNN. Supervised
by the teacher’s output, the student network adapts to the teacher
and becomes imparted with the teacher’s knowledge. In [15], the
KL divergence between the two networks is minimized. The teacher
could be further used to generate more labels of unseen data for the
student. The authors were able to achieve 5.08% relative word error
rate reduction with this student network than with a small network
trained directly. The authors of [19] included additional hints from
the teacher, which are inserted into the middle of the student net-
work as intermediate supervision, resulting in a network of 10 times
smaller. Both studies have demonstrated the effectiveness of homo-
geneous knowledge transfer when using learned target from more
capable networks (in the sense of more parameters) to smaller ones
for classification tasks. We wish to explore mechanisms to transfer
knowledge from larger to smaller DNNs for speech enhancement in
a regression task.

2.2.2. Network Transformation
The different architecture of the student network from its teacher
naturally calls for the idea of network morphism. Net2Net is a con-
cept developed in [20] that primarily transfer the knowledge of a
learned network to a deeper or wider network. As a result, the stu-
dent network is argued to be more potent with learning thanks to its
larger size. The idea is further extended to MorphNet [21] to train a
child network with knowledge transferred from its parent at a much
faster rate. However, transferring knowledge from larger networks
to smaller ones was not addressed in either work.

2.3. Compression of Neural Networks
During training, the redundancy of parameters in deep networks fa-
cilitates the searching for good local minimum of the loss function,

Fig. 1: (a) Supervision with only soft target under sequential
learning. (b) Supervision by multi-tasks.

provided that reasonable regularization are adopted [22]. Multitude
of work have been attempted to compress these trained models. Au-
thors of [11] trained compact models to mimic large ensembles of
networks with negligible loss in performance by generating pseudo
data and labeling these data with the ensembles. The idea of net-
work surgery by removing less important weights was explored in
[23] and [24]. More recently, the authors in [7, 25] extended the idea
and achieved an overall of 30 to 50 times model compression on the
ImageNet data set via pruning, quantization, and encoding. Matrix
decomposition with low-rank estimation is employed in [26] gen-
erating about 1 to 7 times model compression on the same data set.
However, since knowledge is condensed into a smaller model instead
of being transferred, such techniques may be sensitive to variations
in data distributions. Nonetheless, we consider these compression
techniques as post-processing steps that could be applied to many
networks, large or small, to achieve further reduction in model sizes.

3. TRANSFER LEARNING IN NETWORK COMPRESSION

3.1. Sequential Transfer Learning
We first consider sequential transfer learning where both the
source and target domains correspond to the same acoustic space
[18]. The common task is to remove additive noise to recover the
clean speech spectrum. To overcome the challenge that the smaller
networks are hampered by reduced model sizes, we assume that the
DNN outputs of the teacher network encapsulates the knowledge
about the probability distribution of the acoustic features in the fea-
ture space, as in [15] yet for a regression task. By using the teacher’s
outputs as soft targets [27] referred to in this paper as opposed to
the conventional clean targets (with a little abuse of terminology),
we distill the knowledge acquired by a more complex model into a
smaller one. This is illustrated in Fig.1(a).

3.2. Multi-task Transfer Learning
While the use of soft targets can allow us to transfer the knowledge
acquired by a complex neural network into a less complex DNN for
the speech enhancement task, the distortion in the teacher output val-
ues may hinder a proper deployment of the noise-to-clean mapping
of the student. Multi-task transfer learning can address such an is-
sue by retaining the access to the clean target speech. In this case, the
student is forced to learn two tasks in parallel, namely predicting the
clean and learning the teacher’s noise-to-clean mapping. We assume
that knowledge embedded in the teacher’s output could aid learning
for the primary task of reconstructing clean target speech, Ycln. The
soft targets, Ysoft, supplement as secondary targets, weighted by a
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Fig. 2: Example of progressive transfer learning architecture. The
noisy speech frame included is indicated with the dashed line.

factor of λ. The loss function L to train the student network is thus:

L =
1

2N
||Ycln − Pcln||2 +

λ

2N
||Ysoft − Psoft||2 (1)

where Pcln and Psoft are the predictions of the clean and soft tar-
gets, respectively. N is the number of frames in mini-batch training
in which the clean and soft targets are concatenated for the supervi-
sion of student network as shown in Fig.1(b).

3.3. Progressive Stacking Transfer Learning
With the trained models from Sec.3.2, we could further transfer
knowledge to secondary networks to boost the overall performance.
The outputs of the base networks exhibit representations that are
very close to the targets. Thus, we select the outputs from the base
networks with respect to the clean targets (its primary task) and feed
them to the follow-up networks. The secondary networks are also
trained under multi-task supervision. Since each stage needs not to
finish the whole task, progressive learning warrants the use of sim-
pler architectures (e.g., narrow hidden layers) for each stage. After
training the secondary networks, the whole network is combined
and fine-tuned to form a deeper yet narrower network. This process
could be repeated to stack in more stages. An example with 2-stage
networks and 3 frames in each stage is illustrated in Fig.2. Only the
primary targets are shown for an ease of understanding.

However, one must be cautioned that the knowledge from the
base network may not be entirely accurate and constructive, espe-
cially during aggressive compression using very narrow bases. The
lesser learning capability of these narrow networks may introduce
considerable distortions, usually referred to as negative knowl-
edge[10]. There is no universally agreed approach to avoid such
negative knowledge. We propose to counteract such artifacts by
retaining the access to the original noisy signals for secondary net-
works during training. This is shown by the dashed line in Fig.2. In
the case that only a small context window of 3 is used, the enhanced
frame of a two-stage network could be formulated as

yn = F1

(
xn−1, xn, xn+1

)
(2)

zn = F2

(
yn−1, yn, yn+1, xn

)
(3)

with Fi represents the network function of a single stage and yn’s
represent the intermediate outputs from the first stage.

4. EXPERIMENTAL SETTINGS

Clean speech was selected from the TIMIT database [28], synthe-
sized with 100 noise types [29] at 6 different SNR levels from -5dB
to 20dB at a 5dB interval. The training, development, and matched
test set contain 15, 1.5, and 0.8 hours of these multi-condition noisy
speech respectively. We also created a 1.5-hour mistmatched test set

Table 1: AVERAGE PESQ AND LSD BETWEEN VARIOUS
NAIVELY TRAINED NETWORK.

Network Matched Mismatched
PESQ LSD PESQ LSD

Original 2.31 5.60 2.34 6.91
Baseline 3.14 2.52 2.63 3.94
3×800 3.01 2.78 2.56 4.01
6×800 3.04 2.82 2.57 4.12
10×800 2.95 3.21 2.49 4.42

using 15 unseen noise types [30] to evaluate the robustness of the
DNNs. The optimization of DNN parameters follows the standard
recipe described in [3]. The baseline system in [3] is used to as the
teacher network to generate soft targets. Preliminary investigation
shows that 0.1 to 1 is a reasonable range for the weight parame-
ter λ. Hence, the value of 1 was used for multi-task training. In
progressive transfer learning, a context window of 5 is supplied to
the base networks. All subsequent stages used 3 context windows
from previous stages, together with an original noisy speech frame.
Multi-task training is used to supervise all network training. During
fine-tuning, the initial learning rate is set to 10 times of that during
the last iterations of training the secondary network.

Two objective metrics are used to assess the quality of enhanced
speech. Perceptual evaluation of speech quality (PESQ) [31] cor-
relates closely with subjective perception of speech quality. Log
spectral distortion (LSD), e.g., [32], which correlates more with the
MMSE loss function, measures the distance between the spectra of
the original and the corrupted signals.

5. EXPERIMENTS AND RESULT ANALYSIS

5.1. Direct Training without Knowledge Transfer Results
The baseline system [3] uses a 3-layer network with 2048 hidden
nodes in each layer. In the effort to establish a thinner but deeper
network of the same performance, we are able to train a narrow net-
work of a moderate depth (6 layers, 800 hidden nodes). It performs
better than a shallower network of equal width, but it could not be
matched against the baseline, as shown in the left part of Table 1
with the match test set, attaining a PESQ score of 3.04 and an LSD
of 2.82 dB. Our experiments further confirm that training a thinner
and deeper network of 10 layers naively resulted in worse PESQ of
2.95 and an LSD of 3.21 dB shown in the bottom row, caused by the
well-known vanishing gradient problems [33]. Similar trend is ob-
served in the test for mismatched noise conditions. In the following
discussions, the networks follow the nomenclature that l×m means
a network of l hidden layers of m hidden nodes each.

5.2. Sequential Transfer Learning Results
Student DNNs learn from the soft targets as well as learning from
clean targets, if not better. A student of moderate width (800 hidden
nodes) of 3, 6, and 10 layers are selected to learn from the clean tar-
gets OR the soft targets. In Figure 3 we compare four DNN config-
urations, baseline 3x2048, 3x800, 6x800 and 10x800, as displayed
in each set of the bar chart from left to right. The striped bars in all
four sets correspond to sequential transfer learning which is compa-
rable with the white bars representing direct learning as explained
in Section 5.1. Evident from Fig.3(b), the networks trained under
sequential learning with soft targets achieved much lower LSD than
those trained with clean targets, while both approach obtain similar
PESQ scores in 3(a). The benefit of using soft targets is particularly
pronounced for deeper models (10× 800) which could not be trained
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Fig. 3: PESQ and LSD of direct, sequential, and multi-task
traininig on (a,b) matched and (c,d) mismatched test set.

well with conventional means. Same observation could be made for
the mismatched test set shown in Fig.3 (c) and (d).

5.3. Multi-task Transfer Learning Results
Still in Fig.3, the solid bars represent the PESQ and LSD of net-
works trained under multi-tasks. When DNN of an equal size as the
teacher is trained under multi-task learning, its performance is even
superior to the teacher’s, manifested as higher PESQ and lower LSD
of the solid bars. This suggests the merit of distilled knowledge in
the teacher’s soft targets. For student DNNs with width of 800, we
could observe an increase in PESQ and drop of LSD in all architec-
tures by comparing the solid and the white bars in Fig.3. In fact, the
6-layer network have PESQ score (2.61) very close to the baseline
(2.63) for the mismatched noise condition. Nevertheless, the depth
of the DNN is still limited to fewer than 10 layers.

5.4. Progressive Transfer Learning Results
Progressive knowledge transfer as shown in Figure 2 allows us to
grow the depth of the student DNNs and to potentially boost their
performances. In the following experiments, the base networks are
all with 6 layers and the subsequent stages are with 3 layers each.
Additional contexts together with the noisy speech frames are fed
into the subsequent stages, since wider contextual information has
proven to be beneficial to DNN-based speech enhancement [4, 17].
However, the narrow networks often could not accommodate the
large contexts in the input layer, as substantial reduction in dimen-
sion from the input to the hidden layer result in irreversible loss of
information. Progressive transfer learning circumvents this problem
by using small contexts at each stage. The knowledge from the lower
networks is further contextualized with its adjacent frames to be pro-
cessed by the secondary networks. This way, knowledge is further
summarized and relayed to the top layers.

Large gains in PESQ were witnessed after two stages, especially
for thinner networks, as shown in the left bar chart set in Fig.4. For
example, the PESQ score goes from 2.52 for width 400 in the white
bar (indicating Stage 1) to the striped bar of 2.63 (representing Stage
2). This could be attributed to partial knowledge transferred from
the base to the top networks. Stage-wise training allows stacking
thin networks that matches the performance of a wide network. Fine

Fig. 4: Average PESQ of networks under progressive learning for
(a) matched and (b) mismatched noise conditions.

Table 2: MODEL SIZE AND PERFORMANCE.

Stage Network # Params reduction PESQ
Baseline 3× 2048 11.5M 1x 2.63

Stage 1
6× 800 4.4M 2.6x 2.61
6× 600 2.7M 4.2x 2.57
6× 400 1.4M 8.1x 2.52

Stage 2
3× 800 6.7M 1.7x 2.66
3× 600 4.2M 2.7x 2.64
3× 400 2.3M 5.1x 2.63

Fine tune
3× 800 6.7M 1.7x 2.67
3× 600 4.2M 2.7x 2.66
3× 400 2.3M 5.1x 2.64

tuning also gives slight PESQ gains in all cases as indicated by the
solid bars.

5.5. Model Reduction Analysis
Finally, we analyze the model compression results, at maintaining a
reasonable PESQ score for the mismatched noise tests, when com-
pared with the baseline system. As shown in Table 2 the two-stage
network of 400 hidden nodes with fine-tuning in the bottom row has
achieved 5 times of parameter reduction from 11.5M to 2.3M pa-
rameters at a marginal PESQ gain from 2.52 to 2.64. It has 10 layers
(6 hidden, 1 intermediate output, 3 hidden) in total, yet it outper-
forms that naively trained 10-layer network with 400 hidden nodes
(at PESQ = 2.35) not shown in Table 1.

6. CONCLUSION AND FUTURE WORK

In this study, we propose a transfer knowledge scheme from a trained
large DNN to a smaller network for a regression task. Three trans-
fer approaches are proposed and compared. In multi-task transfer,
the use of soft target provides additional guidance that compensates
the inadequate learning capability of smaller networks. Progressive
stacking provides effective means of incorporating large context of
speech frames into narrow networks. Our experiments in speech en-
hancement find the smaller network could match the performance
against wider ones by using much fewer parameters. The tests with
both matched and mismatched noise conditions suggest that the pro-
posed transfer learning scheme is effective even when the feature
space changes or the underlying probability distribution shifts.

Future effort could include more quantitative evaluation of the
quality of teacher’s knowledge in an attempt to minimize negative
knowledge. This would allow future researchers to set different
weights to the teacher’s output in multi-task learning. The quan-
tification of knowledge would also allow us to assess the trade-off
between knowledge retention and model size under the paradigm of
lossy compression, paving ways to methodical selections of optimal
model sizes to achieve acceptable system performances.
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