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ABSTRACT
Speech enhancement in noisy environments has been widely
investigated by modifying only the amplitude spectrum of
the speech signal, while the phase spectrum, which is re-
garded as an unimportant feature, is ignored. However, it
has recently been reported that the phase spectrum plays an
important role in the intelligibility and quality of speech. We
propose a speech-enhancement method with phase recon-
struction, which estimates inartificial phase spectrum by us-
ing the time-frequency feature called phase distortion, though
a conventional phase reconstruction estimates artificial one.
The objective experimental results indicate improvement in
speech quality with and efficiency of the proposed method.

Index Terms— Phase reconstruction, Phase distortion,
Speech enhancement, Harmonic structure, Fundamental fre-
quency

1. INTRODUCTION

The improvement in engineering techniques has enabled
speech communication and speech recognition anywhere with
the use of smart phones and tablet PCs. In these cases, speech
is corrupted by additive background noise, which makes it
difficult to communicate smoothly and maintain performance
of automatic speech recognition. Therefore, it is important to
estimate clean speech from degraded speech through speech
enhancement, thus, many studies on speech enhancement
have been conducted [1–5]. The speech-enhancement pro-
cess is generally done in the time-frequency domain. The
amplitude spectrum has been particularly addressed, while
the phase spectrum has not been regarded as an important
feature [6, 7]. Even spectral subtraction [1] and minimum
mean square error - short time spectral amplitude (MMSE-
STSA) estimator [2], which are well known speech enhance-
ment techniques, do not reconstruct the phase spectrum. The
reasons the phase spectrum has been ignored are as follows.

• The spectral amplitude is known to be more important in
speech communication than the phase spectrum [6, 7].

• Ephraim and Malah have reported that the noisy phase (un-
processed) is the MMSE optimal estimate [2].
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Fig. 1. Block diagram of speech enhancement with phase
reconstruction.

• The phase wrapping issue makes it difficult to analyze the
characteristics of the phase spectrum.

However, Paliwal et al. [8] have recently argued that the
clean phase spectrum improves speech intelligibility and the
perceptual evaluation of speech quality (PESQ) [9]. More-
over, many studies on the importance of the phase spec-
trum in speech intelligibility and quality have been con-
ducted [10–13]. These investigations enabled the widespread
study of phase reconstruction in speech enhancement. Figure
1 shows a block diagram of speech enhancement with phase
reconstruction.

Griffin et al. [14] and Le Roux et al. [15] proposed it-
erative phase-reconstruction methods based on the discrete
Fourier transform (DFT) and inverse DFT (IDFT). Sugiyama
et al. [16] proposed noise reduction with phase randomiza-
tion. Gerkmann et al. [17–21] and Mowlaee et al. [22–24]
proposed fundamental frequency-based methods. This fun-
damental frequency-based approach involves a simple algo-
rithm and has received much attention. In this paper, we
focus on this approach and propose a phase-reconstruction
method. The short-time Fourier transform phase improve-
ment (STFTPI) method [17], which is used as a baseline
method, reconstructs artificial phase spectrum, which causes
buzzy speech quality. We tackle this problem and improve
speech quality by estimating inartificial phase spectrum.

The remainder of this paper is organized as follows. In
Section 2, we review related work regarding phase recon-
struction for speech enhancement. In Section 3, we intro-
duce a signal model and define symbols. We describe the
proposed phase-reconstruction method in Section 4 and dis-
cuss the evaluation of the method in Section 5. Finally, we
draw conclusions in Section 6.
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2. RELATED WORK

There are two approaches related to phase reconstruction for
speech enhancement. One involves amplitude-required meth-
ods. The iterative phase-spectrum-estimation method by Grif-
fin and Lim based on the DFT and IDFT is a well known
phase-reconstruction method. The consistent Wiener filtering
proposed by Le Roux et al. [15] is also an iterative method
that estimates the consistently complex spectrum with iter-
ation of the DFT and IDFT. However, these iterative meth-
ods require a clean spectral amplitude, and their estimation
accuracy significantly depends on the amplitude spectrum.
Moreover, these methods have high computational complex-
ity, which makes real-time processing difficult. Mowlaee and
Saedi [25] reported phase reconstruction based on the rela-
tionship of geometry, but this reconstruction also requires a
clean amplitude spectrum, which is a difficult condition to
satisfy, just like with iterative methods.

The other approach has recently received much atten-
tion in phase reconstruction. This involves model-based
methods, particularly fundamental frequency-based meth-
ods. Compared to amplitude-required methods, fundamental
frequency-based methods are advantageous in that the clean
amplitude spectrum is not required and the computational
complexity is low. Gerkmann et al. [17] and Mowlaee et
al. [22] proposed fundamental frequency-based methods.
While phase decomposition and spectral smoothing with rel-
ative phase shift were used for phase reconstruction [22],
the harmonic signal model was used and phase reconstruc-
tion along time and frequency was defined [17]. With the
STFTPI [17], it is assumed that the fundamental frequency
changes slowly over time in voiced duration. The STFTPI
defines two simple algorithms along time and frequency as
follows:

ϕ̂S
κ̃[h,τ ],τ = ϕ̂S

κ̃[h,τ ],τ−1 +Ωk
h,τL, (1)

ϕ̂S
κ̃[h,τ ]+δ,τ = ϕ̂S

κ̃[h,τ ],τ − ϕW
κ̃[h,τ ]−κ[h,τ ] + ϕW

κ̃[h,τ ]−κ[h,τ ]+δ,

(2)

where L is a frame shift, ϕW
ω is the phase property of a

window function in frequency ω with discrete-time Fourier
transform, Ωk

h,τ is a normalized angular frequency, κ[h, τ ]
is a non-integral value in the frequency bin scale with re-
spect to the h-th harmonic frequency at time frame τ , and
κ̃[h, τ ] is a frequency bin with respect to the h-th harmonic
frequency at time frame τ . These symbols are defined in
detail in Sec. 3. Equation (1) shows the relationship between
phase spectra at time frames τ and τ − 1, while Eq. (2)
represents phase estimation adjacent to the harmonic com-
ponent based on window-phase compensation with integer
δ ∈

[
−κ[0, τ ]/2, κ[0, τ ]/2

]
.

Equations (1) and (2) improve the PESQ, while they re-
construct an artificial phase, which causes buzzyness at higher
harmonics. Moreover, the estimation accuracy depends on

the initial value in Eq. (1). The STFTPI method uses the
noisy phase at the onset of a voiced duration as the initial
estimate. However, the signal-to-noise ratio (SNR) in the har-
monic component, especially higher harmonics, may be low
and unreliable. Furthermore, the phase spectra in each har-
monic component are independently estimated. These pro-
cesses may also cause buzzyness.

3. SIGNAL MODEL AND NOTATIONS

We assume that a speech signal s(n) is corrupted by an addi-
tive noise d(n) with time sample index n as x(n) = s(n) +
d(n). The noisy speech spectrum Xk,τ is given by segmen-
tation, windowing, and DFT of the noisy speech x(n). The
Xk,τ is represented as

|Xk,τ |ejϕ
X
k,τ = |Sk,τ |ejϕ

S
k,τ + |Dk,τ |ejϕ

D
k,τ , (3)

where k = 0, · · · ,K−1 and τ are the frequency bin and time
frame, respectively. Here, |Xk,τ |, |Sk,τ |, and |Dk,τ | are the
amplitude spectrum of the noisy speech signal, clean speech
signal, and additive noise signal, respectively. The ϕX

k,τ , ϕS
k,τ ,

and ϕD
k,τ are the phase spectra of these signals.

We define the symbols for the harmonic component (h =
0, · · · ,H − 1) as follows:

κ̃[h, τ ] = argmin
k

|k − κ[h, τ ]| , (4)

κ[h, τ ] =
K

2π
Ωk

h,τ , (5)

Ωk
h,τ = argmin

Ωh,τ

|Ωk − Ωh,τ | , (6)

where H and K are the harmonic number and DFT point, re-
spectively. The Ωk = 2πk/K and Ωh,τ = 2πfh,τ/Fs are
normalized angular frequencies. The fh,τ = (h+ 1)f0,τ and
f0,τ are the h-th harmonic frequency and fundamental fre-
quency at τ , respectively, Fs is the sampling frequency, and ·̂
represents the estimation of symbol ·.

4. PROPOSED PHASE-RECONSTRUCTION
METHOD

We propose a phase-reconstruction method based on the
phase behavior in the time-frequency domain. Figure 2
shows the conceptual diagram of the proposed method. The
phase spectra in the harmonic components are estimated from
the relationship of harmonics and temporal behavior. First,
we assume that the phase spectrum of the speech is mod-
eled as a summation of a minimum-phase term, linear-phase
term, and source-shape term as Degottex and Erro did in their
study [26]. Then, the phase distortion (PD) feature in the h-th
harmonic component Πκ̃[h,τ ],τ is defined as

Πκ̃[h,τ ],τ = ϕS
κ̃[h,τ ],τ − ϕS

κ̃[h−1,τ ],τ − ϕS
κ̃[0,τ ],τ . (7)
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Fig. 2. Conceptual diagram of proposed phase-reconstruction
method.

The PD feature represents the relationship between the phase
spectra in the h-th and (h − 1)-th harmonic components
through the phase spectrum in the 0-th harmonic component,
i.e., fundamental frequency. Degottex and Erro discussed an
important temporal behavior of the PD feature [26], which
is the PD feature’s temporal constancy Πκ̃[h,τ ],τ = Πh in
voiced duration. From this constancy and Eq. (7), the phase
spectrum in the h-th harmonic component is derived as

ϕS
κ̃[h,τ ],τ = Πh + ϕS

κ̃[h−1,τ ],τ + ϕS
κ̃[0,τ ],τ . (8)

Equation (8) represents not only the relationship between har-
monic components but the temporal behaviors of the phase
spectra. In addition, we assume that the local SNR in the 0-th
and 1-th harmonic components is high. In other words, the
noisy phase spectra are close to the phase spectra of the clean
speech in these components. This assumption and Eq. (8)
derive the following phase reconstruction:

ϕ̂S
κ̃[h,τ ],τ ={
ϕX
κ̃[h,τ ],τ , ξ̂κ̃[h,τ ],τ > ξthre,

Π̃κ̃[h,τ ],τ+ϕX
κ̃[h−1,τ ],τ+ϕX

κ̃[0,τ ],τ , otherwise,

(9)

Π̃κ̃[h,τ ],τ = ̸ exp

(
j

τ+∆∑
t=τ−∆

Πκ̃[h,τ ],t

)
, (10)

where ξ̂κ̃[h,τ ],τ is the estimate of the priori SNR at τ and fre-
quency bin κ̃[h, τ ]. The ξthre, ∆, and j are the threshold value
of the priori SNR, parameter for temporal averaging, and an
imaginary unit, respectively. These equations show that the
phase spectrum at τ and κ̃[h, τ ] is estimated from the phase
spectra at adjacent frames and at lower harmonic components.
In addition, the phase spectrum between harmonics is esti-

mated using Eq. (2) as follows:

ϕ̂S
κ̃[h,τ ]+δ,τ =

{
ϕX
κ̃[h,τ ],τ , ξ̂κ̃[h,τ ],τ > ξthre,

ϕ̂S
κ̃[h,τ ],τ − ϕW

ρ + ϕW
ρ+δ, otherwise,

(11)
ρ = κ̃[h, τ ]− κ[h, τ ]. (12)

Finally, the enhanced speech spectrum is reconstructed by the
estimated amplitude and phase as Ŝk,τ = |Ŝk,τ |ejϕ̂

S
k,τ (k =

0, · · · ,K − 1), then the IDFT, synthesis windowing, and
overlap-add are conducted to transform enhanced speech in
the time domain.

5. EXPERIMENTAL EVALUATIONS

5.1. Experimental setup

We conducted experiments to evaluate the proposed phase-
reconstruction method compared with a baseline method
(STFTPI). We randomly selected 20 utterances consisting 10
male and 10 female speakers from ATR phoneme-balance
216 words [27] as the clean speech samples. The sampling
rate during the experiments was 16 kHz, and the frame length,
frame shift, and DFT points were 32 ms, 4 ms, and 512 points,
respectively. Noisy speeches were generated by mixing the
clean speech samples and additive noise signals at SNRs
ranging from 0 to 15 dB. White and babble noise were se-
lected from NOISEX-92 [28] as stationary and non-stationary
noise signals, respectively. We used the Hamming window
function for amplitude spectrum analysis and the Blackman
window function for phase analysis and spectral synthesis, as
shown in Fig. 1. The Blackman window has a large dynamic
range and is suitable for phase-spectrum analysis.

We used the MMSE-STSA estimator [2] for amplitude
enhancement and the STFTPI [17] and proposed method for
phase reconstruction. Moreover, the noisy (unprocessed)
and clean phases were applied to compare with conventional
speech enhancement and confirm the upper-bound perfor-
mance, respectively. The priori SNR was estimated using the
directed-decision method [2] with the MMSE-STSA gain,
and the noise power estimate was calculated using the av-
erage power spectrum of the noisy speech in the first five
unvoiced intervals. The parameters ξthre in Eqs. (9) and (11)
and ∆ in Eq. (10) were 5 and 1, respectively. These values
were experimentally determined.

To estimate fundamental frequency f0 and voice activ-
ity duration, we used the pitch estimation filter with ampli-
tude compression (PEFAC) [29] and a simple method based
on signal power thresholding, respectively. The number of
harmonic components H is defined as ⌊4000/f0,τ⌋, as de-
fined by Gerkmann et al. [17] and phase reconstructions were
conducted up to 4 kHz in voiced duration. Here, ⌊·⌋ repre-
sents the flooring operation. To evaluate the performance of
speech quality and intelligibility, we used the PESQ and short
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Fig. 3. PESQ improvement with various methods at various input SNRs.
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Fig. 4. STOI improvement with various methods at various input SNRs.

time objective intelligibility measure (STOI) [30]. The higher
these indexes, the higher speech quality and intelligibility are.

5.2. Results

Figure 3 shows the PESQ improvement with various methods
at various input SNRs. The PESQ improvement is defined as
the improvement relative to the noisy speech signal (the un-
processed amplitude and phase spectrum). As shown in Fig. 3
(a), the proposed method (PD-f0ora, PD-f0est) outperformed
the baseline method (STFTPI-f0ora, STFTPI-f0est) for white
noise. These results suggest that the temporally averaged PD
feature from Eqs. (9) and (10) was effective compared with
the phase replacement from Eq. (1). The constraint of phase
reconstruction by using the priori SNR was also effective.
Figure 3 (a) also shows that the two methods depended on
the estimation accuracy of f0, and the phase reconstructions
with the estimated f0 degraded speech quality. However, the
proposed method with the estimated f0 (PD-f0est) was ef-
fective compared to the STFTPI with the oracle f0 (STFTPI-
f0ora). In contrast, the proposed method was not effective at
low SNRs (0 and 5 dB), as shown in Fig. 3 (b). This is be-
cause the assumption described in Sec. 4 was not met in the
babble-noise environment, and this non-stationarity degraded
the estimation accuracy of the noise power and priori SNR.

The STOI improvement with various methods at various
input SNRs is shown in Fig. 4. From Fig. 4 (a), the results for
white noise indicate that the proposed method outperformed
the STFTPI at high SNRs (10 and 15 dB). Figure 4 (b) shows
that the STFTPI achieved high intelligibility, while it signif-
icantly depended on the f0 value. By contrast, the proposed
method did not largely depend on the f0 value, and the STOI
with this method was stable regardless of the SNR. The de-
pendence was also caused by the difference between the phase
replacement from Eq. (1) and phase estimation from Eq. (9).

6. CONCLUSIONS

We proposed a phase-reconstruction method based on the pri-
ori SNR and PD feature. The PD feature represents the rela-
tionship between the phase spectra in harmonics and tempo-
ral behaviors. We used the priori SNR as a reliability index of
the phase spectrum. The experimental results indicate that the
PESQ with the proposed method outperformed that with the
STFTPI for white noise at both high and low SNRs and for
babble noise at high SNRs. While the STFTPI achieved high
STOI at low SNRs, the proposed method improved STOI at
high SNRs. Future work will involve improving the proposed
method, introducing a noise estimator, and conducting exper-
iments for various types of noise and objective experiments.
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[8] K. Paliwal, K. Wójcicki, and B. Shannon, “The importance of
phase in speech enhancement,” ELSEVIER, Speech Commu.,
vol. 53, no. 4, pp. 465–494, 2011.

[9] ITU-T, “Perceptual evaluation of speech quality (PESQ),”
ITU-T Rec. P. 862, 2001.

[10] M. Kazama, S. Gotoh, M. Tohyama, and T. Houtgast, “On
the significance of phase in the short term Fourier spectrum for
speech intelligibility,” J. Acoust. Soc. Amer., vol. 127, no. 3,
pp. 1432–1439, 2010.

[11] T. Gerkmann, M. Krawczyk, and J. Le Roux, “Phase process-
ing for single-channel speech enhancement,” IEEE Signal Pro-
cess. Magazine, pp. 55–66, 2015.

[12] M.S.E. Langarani, H. Veisi, and H. Sameti, “The effect of
phase information in speech enhancement and speech recogni-
tion,” in The 11th. Int. Conf. on Info. Sci., Signal Process. and
their applications, 2012, pp. 1446–1447.

[13] T. Gerkmann, M. Krawczyk, and R. Rehr, “Phase estima-
tion in speech enhancement unimportant,important,or impos-
sible?,” in Proc. IEEE Conv. Elect. Electron. Eng. Israel, Eilat,
Israel, 2012.

[14] D.W. Griffin and J.S. Lim, “Signal estimation from modified
short-time Fourier transform,” IEEE Trans. on Acoust., Speech
and Signal Process., vol. 32, no. 2, pp. 236–243, 1984.

[15] J. Le Roux, N. Ono, and S. Sagayama, “Explicit consis-
tency constraints for STFT spectrograms and their application
to phase reconstruction,” in Proc. ISCA Workshop Statistical
Perceptual Audition (SAPA), 2008, pp. 23–28.

[16] A. Sugiyama and R. Miyahara, “Phase randomization - a new
paradigm for single-channel signal enhancement,” in Proc
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
2013, pp. 7487–7491.

[17] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction
in voiced speech for an improved single-channel speech en-
hancement,” IEEE Trans. on Audio, Speech and Lang. Pro-
cess., vol. 22, no. 12, pp. 1931–1940, 2014.

[18] T. Gerkmann and M. Krawczyk, “MMSE-optimal spectral am-
plitude estimation given the STFT-phase,” IEEE Signal Pro-
cess. Lett., vol. 20, no. 2, pp. 129–132, 2013.

[19] T. Gerkmann, “Bayesian estimation of clean speech spectral
coefficients given a priori knowledge of the phase,” IEEE
Trans. Signal Process., vol. 62, no. 16, pp. 4199–4208, 2014.

[20] M. Krawczyk, R. Rehr, and T. Gerkmann, “Phase-sensitive
real-time capable speech enhancement under voiced-unvoiced
uncertainty,” in Proc. EURASIP Eur. Signal Process. Conf.
(EUSIPCO), Marrakech, Morocco, 2013.

[21] M. Krawczyk and T. Gerkmann, “STFT phase improvement
for single channel speech enhancement,” in Proc. Int. Work-
shop Acoust. Echo, Noise Control (IWAENC), Aachen, Ger-
many, 2012.

[22] P. Mowlaee and J. Kulmer, “Harmonic phase estimation in
single-channel speech enhancement using phase decomposi-
tion and SNR information,” IEEE Trans. on Audio, Speech
and Lang. Process., vol. 23, no. 9, pp. 1521–1532, 2015.

[23] J. Kulmer, P. Mowlaee, and M. Watanabe, “A probabilistic ap-
proach for phase estimation in single-channel speech enhance-
ment using von Mises phase priors,” in Proc IEEE Workshop
Mach. Learn. Signal Process., 2014, pp. 1–6.

[24] P. Mowlaee and J. Kulmer, “Phase estimation in single-channel
speech enhancement: Limits-potential,” IEEE Trans. on Au-
dio, Speech and Lang. Process., vol. 23, no. 8, pp. 1283–1294,
2015.

[25] P. Mowlaee and R. Saeidi, “Time-frequency constraint for
phase estimation in single-channel speech enhancement,” in
Proc. Int. Workshop Acoust. Signal Enhance. (IWAENC), 2014,
pp. 338–342.

[26] G. Degottex and D. Erro, “A uniform phase representa-
tion for the harmonic model in speech synthesis applications,”
EURASIP J. Audio, Speech, Music Process., vol. 2014:38, no.
1, Oct. 2014.

[27] K. Takeda, Y. Sagisaka, and S. Katagiri, “Acoustic-phonetic
labels in a Japanese speech database,” European Conference
on Speech Technology, vol. 2, pp. 13–16, 1987.

[28] A. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones,
“The NOISEX-92 study on the effect of additive noise on au-
tomatic speech recognition,” Tech. Rep., DRA Speech Res.
Unit, 1992.

[29] S. Gonzalez and M. Brookes, “PEFAC - a pitch estimation al-
gorithm robust to high levels of noise,” IEEE Trans. on Audio,
Speech and Lang. Process., vol. 22, no. 2, pp. 518–530, 2014.

[30] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen,
“An algorithm for intelligibility prediction of time-frequency
weighted noisy speech,” IEEE Trans. on Audio, Speech and
Lang. Process., vol. 19, no. 7, pp. 2125–2136, 2011.

5564


