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ABSTRACT

In this work we explore data-augmentation techniques for the task of
improving the performance of a supervised recurrent-neural-network
classifier tasked with predicting prosodic-boundary and pitch-accent
labels. The technique is based on applying voice transformations to
the training data that modify the pitch baseline and range, as well
as the vocal-tract and vocal-source characteristics of the speakers to
generate further training examples. We demonstrate the validity of
the approach by improving performance when the amount of base la-
beled examples is small (showing reductions in the range of 7%-12%
for reduced-data conditions) as well as in terms of its generalization
to speakers unseen in the training set (showing a relative reduction
in the error rate of 8.74% and 4.75%, on the average, for boundaries
and accent tasks respectively, in leave-one-speaker-out validation).

Index Terms— data augmentation, voice transformation, prosody
labeling, recurrent neural networks

1. INTRODUCTION

The topic of automatic labeling of prosodic events has received
considerable attention in the literature on prosodic analysis as cor-
pora that carry annotations prominence and phrasing annotations
can serve as a valuable resource for speech scientists. Examples
of the types of application that such a resource could provide in-
clude enabling various linguistic analyses (e.g., studying intonation
variation) or developing speech-language technologies (e.g., the
prosodically-marked text associated with a speech corpus could
be used when training a data-driven phrasing module in a text-to-
speech front-end). Creating such databases by human annotation
is known to be a notoriously laborious and expensive effort, a fact
that has motivated automating the task in some way. Still, although
a variety of modeling techniques have been proposed, most of the
successful approaches can be situated within fully supervised or
semi-supervised frameworks that rely on some amount of labeled
data to train a classifier. Given this dependence on labeled data, we
are then interested in approaches that will improve the performance
for small or moderate amounts of training data since this represents
a realistic scenario in terms of data acquisition. A related limitation
brought over by small databases concerns the speaker variability
observed in the corpora, and thus the ability of a model trained on
this limited data to generalize outside the training pool. We are
therefore also interested in approaches that will degrade gracefully
when presented with unseen speakers.

Motivated by these observations, in this paper we explore tech-
niques which augment the amount of labeled training examples with-
out having to procure new independent (hand) annotations for the

new training material. At the core of these data-augmentation (DA)
approaches is an automatic transformation of the input exemplars in
such a way that we can still associate them with the original labels;
that is to say, the transformation is label-preserving with respect to a
particular label of interest. In this work, we are interested in model-
ing binary prosodic labels indicating whether a word receives a pitch
accent or is followed by an intonational phrase boundary, based on
acoustic input features extracted from the audio stream. We propose
to investigate a set of acoustic transformations that alter the (global)
fundamental frequency, speaker’s vocal tract, and voice quality (by
voice source manipulation) in a way that preserves the local patterns
of prominence and phrasing, and thus allows for the generation of
many more training exemplars for training the model.

2. DATA AUGMENTATION VIA TRANSFORMATIONS OF
THE VOCAL SOURCE AND TRACT

The approach we explore in this work relies on generating multi-
ple “copies” of the acoustic training material that is distinct enough
from the original data in feature space, yet respects the same se-
quence of categorical prosodic labels we want to model: pitch ac-
cents and intonational phrase boundaries. For this type of label-
preserving audio modification, we use an analysis-resynthesis and
voice-transformation framework to separate vocal-tract and glottal-
excitation components. Although a detailed description of the ap-
proach lies beyond the scope of this paper, in what follows we review
the fundamental aspects of the modeling to offer enough insight into
the augmentation technique.

Analysis: At this stage, a pitch contour is first extracted from
the audio signal at a 5ms-update rate. The audio signal is then ana-
lyzed at the same frame update rate. All unvoiced frames are skipped
whereas each voiced frame is analyzed by a window containing 3.5
pitch cycles to yield glottal-source and vocal-tract parameters. The
glottal source is represented by the Liljencrants-Fant (LF) glottal-
source parametrization [1], represented by the 3-parameter vector
θ = [Tp, Te, Ta]

T (normalized by the pitch period), the aspiration
noise level, and the gain factor. The vocal tract is represented by
40 Line Spectral Frequencies (LSF). The temporal trajectories of all
parameters are smoothed with a 7-frames long moving averaging.

Reconstruction: When the audio signal is reconstructed from
the parametric representation, consecutive voiced frames are stacked
together to form contiguous voiced regions. These voiced regions
are then interleaved with the unvoiced regions, which are kept in the
raw PCM representation. A voiced region is synthesized as follows:
First a sequence of consecutive pitch cycle onsets is generated ac-
cording to a desired synthesis pitch contour, which may be either
provided externally or derived from the original one. The glottal-
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Table 1. Summary of transformations. fshift
0 is specified in octaves (a shift of ±1 corresponds to raising/lowering the baseline pitch by

one octave) whereas frange
0 is multiplicative. The pairs in the vocal-tract map corresponds to inflection points (given here in kHz) of the

interpolating spline. T1 through T3 share a common VT transform and apply different pitch and glottal transformations. T4 leaves the vocal
tract unchanged, whereas T6 and T7 leave the glottal sources unchanged.

ID (fshift
0 , frange

0 ) V Tmap βlt {α, θref}
T1 (-0.5,1) {(1, 1.1), (2, 2), (3, 2.8), (4, 3.7)} .7 -
T2 (-0.1,1) {(1, 1.1), (2, 2), (3, 2.8), (4, 3.7)} .27 -
T3 (-2.5,1.5) {(1, 1.1), (2, 2), (3, 2.8), (4, 3.7)} .24 -
T4 (-0.4,2.4) - - {.9, [.45, .8, .01]}
T5 (-2,1) {(.7, .62), (1.2, 1), (2.3, 2), (2.8, 3), (3.7, 3.9), (7, 6.8), (9.3, 9.5)} .9 -
T6 (0,1.1) {(1, .85), (2, 1.85), (3, 2.75), (4, 3.6)} 0 -
T7 (0,1) {(1.2, 1), (2, 2.05), (3, 3.2), (3.85, 4)} 0 -

source and vocal-tract parameters associated with each pitch cycle
are generated by interpolating between the corresponding parame-
ters associated with the cycle’s surrounding (edge) frames. The se-
quence of glottal pulses is generated, and each pulse is multiplied
by its corresponding gain factor. Additive aspiration noise is con-
structed for the entire voiced region by amplitude modulation of a
500-Hz high-passed Gaussian noise signal. The amplitude modula-
tion forms the noise time-envelope shape, so that it is aligned with
the glottal-pulse energy envelope, respects the noise level and gain
values within each cycle, and evolves smoothly at the transitions be-
tween the consecutive cycles. The LSF parameters associated with
each pitch cycle are converted into auto-regression filter coefficients.
Finally, the glottal source undergoes a time-varying auto-regressive
filtering where the filter coefficients are updated at the beginning of
each pitch cycle, and each voiced region is then combined with its
neighboring unvoiced regions using an overlap-add process.

Transformation: The previously described reconstruction algo-
rithm provides the basis for introducing global (time-invariant) voice
modifications that alter vocal tract, glottal pulse, pitch, and speech
rate. Global pitch modifications are introduced by transposition and
stretching of the original pitch contour by factors fshift

0 and frange
0

respectively. The vocal tract transformation takes the form of an in-
terpolating spline function, with user-specified inflection points, that
is used to map each cycle’s LSFs prior to reconstruction. For the
glottal pulse transformations we enable two independent types of
control for modifying the cycle’s glottal-parameter vector θ: either
by (i) interpolating with user-provided reference glottal-pulse vector
θref and mixing weight 0 ≤ α ≤ 1:

θ̂ = (1− α)θ + αθref (1)

or by (ii) interpolating between two stylized (pre-computed) pulses
corresponding to lax and tense voice qualities:

θ̂ =

{
(1− βlt)θ + βltθl if βlt > 0

(1− |βlt|)θ + |βlt|θt otherwise
(2)

where −1 ≤ βlt ≤ 1 is a user-specified parameter that trades be-
tween lax and tense qualities (and recovers the original pulse when
βlt = 0), and θl = [.5, .9, .099]T and θt = [.1, .15, .00001]T are
the stored lax and tense glottal parameters respectively.

We implemented 7 different transformations with which to aug-
ment the training data, summarized on Table 1. These were empiri-
cally chosen so as to provide a good amount of variability in terms
of identity and expressiveness. Because of the global nature of the
transformations, local contextual changes relevant to the perception
of prominence and phrasing are preserved, a fact that was also infor-
mally tested by the authors before conducting any experiments.

3. PREVIOUS AND RELATED WORK

There is work in the prosodic-modeling literature that has previously
addressed the issue of limited resources, with techniques such as
semi-supervised learning [2, 3] and active learning [4, 5] being de-
ployed to compensate for the lack of labeled examples when training
prosodic classifiers. Separately, DA techniques have received recent
focused attention, particularly in the deep-learning literature, given
the renewed interest in building very large neural-network models
that deliver substantial gains when trained with large corpora. The
most relevant area to ours in which these techniques has been applied
include the acoustic models (AM) of speech recognition systems,
though some other applications, like language modeling (e.g., [6],
where machine translation is used to enlarge a set of limited tex-
tual resources), or acoustic-event detection(e.g., [7], where acoustic
signals sharing a common event description are mixed) have also
benefited from similar methodology. Many of the speech techniques
have in common the judicious introduction of variants, at some point
in the processing pipeline, that are meaningful and consistent with
some aspect of the speaker’s speech-production process. Some of
the instantiations of these types of acoustic DA ideas include altering
the speed of speech [8] or the input feature space to the AM to corre-
spond to vocal tract perturbations [9, 10], or to linear feature-space
cross-speaker mappings [10]. Other speech-based DA approaches
focus instead not on augmenting the speaker space, but on creating
more channel noise variability to improve the robustness of the AM
to unseen noise conditions [11].

The exploration of vocal-tract transformations is one of the as-
pects which our proposal shares with previously used techniques.
The proposed approach, however, provides for a much richer set of
transformations taking into account various manipulation related to
vocal-source production that allow the creation of different voice
identities preserving the same phonetic and prosodic sequences.
This type of technique has yet to be explored within the DA liter-
ature. That exploration as a pure DA technique, and its particular
application to the task of automatically classifying prosodic events,
are, to the best of our knowledge, novel contributions of this work.

4. PROSODIC CLASSIFICATION

4.1. Features

A word-level vector of acoustic features is constructed using the Au-
ToBI tool [12] to extract a series of measures found to have been
effective in detecting either pitch accents or boundaries in previ-
ous work [13]. We assume knowledge of the start and end times
of words, but do not use any other lexical information. In this work,
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the same feature vector is common to both detection tasks, and con-
tains features identical to those described in [14]. In the interest of
space, we present a high-level description of the 1,915 features used,
and refer the reader to that paper for additional detail.

Most acoustic features are constructed from short-time frame
analysis contours aggregated over each word. The base contours
are pitch (log Hz), intensity (db), the product of pitch and intensity,
spectral tilt, fundamental frequency variation [15] and deltas of these
contours. The aggregations include minimum, maximum, standard
deviation, mean, and z-score of the maximum in the context of the
word. Additional shape representations include the area under the
curve, tilt coefficients, tonal center of gravity and likelihood of a
curve being a rise, fall, peak or valley. We incorporate context by
normalizing maximum and mean values within a word by statistics
from windows over surrounding words. Features are also extracted
from specific subword regions: the lexically stressed syllable and
the final 200ms. The feature vector also contains features crafted to
exploit the difference between changes in pitch and intensity. Addi-
tionally we extract presence and duration of preceding and following
silence, the duration of the word, and rate of voicing.

The ground truth used to train all systems is derived from per-
ceptual ToBI labels provided by expert annotators (AuToBI is only
used as a front-end feature extractor). Prominence is modeled as a
binary task resulting from collapsing all pitch-accent labels; phrase
boundaries correspond to major (intonational) boundaries.

4.2. Network Structure and Training Recipe

We perform all experiments using bi-directional recurrent neural net-
works (BiRNN), as we have found these to provide state-of-the-art
classification for these tasks in previous work [14]. All systems use
an initial non-recurrent (dimensionality-reduction) projection layer,
which feeds into bi-directional recurrent layers, all of which use
gated recurrent units [16] as their non-linear activation functions.
In early experiments, we found these to work as well or better than
Long Short-Term Memory units [17], while using fewer parameters.

While both tasks use a similar structure, the two experiments
differ in the hyperparameters which result in the best performance.
To identify them, we use a grid search and evaluate performance on
a held-out development set. The grid search explores the following
parameters: 1) Size of the projection layer (15 or 25 for phrase de-
tection, 25 or 50 for pitch accent detection), 2) Size of the recurrent
layers (10, 20 or 30 units), 3) number of recurrent layers (2, 3, 4) ,
4) initial learning rate (1e-3, 1e-4, 5e-5) , 5) momentum (.5, .75, .9)
, and 6) magnitude of random weight initialization (.01, .05).

All RNNs are trained using rmsprop [18] to minimize a cross-
entropy loss function, with gradient clipping set to 50, and initial
learning rates and momentum set via the grid search. We use a batch
size of 1, and evaluate performance against the development set after
each iteration over the training data. We train until neither the loss
function nor the classification error fail to decrease for 5 iterations,
and evaluate the model with the best classification error.

Due to the sensitivity of NNs on initializations and order of data
presentation [19], for each grid-search setting, we train three classi-
fiers and use the median performance as the representative result for
model selection. In the case of ties, we select the hyper-parameter
setting with the smallest standard deviation across the three runs.

5. EXPERIMENT DESCRIPTIONS

We are interested in exploring whether DA can be of help in the
case of limited data resources for supervised learning, and whether

it can improve generalization to speakers for whom no labeled data
is available during training. Both of these reflect realistic operating
points, as we argued in the introduction. To explore these questions,
we have constructed a few case scenarios which are now described in
some detail. In what follows, the sets T ,D,S denote, respectively,
the training, development, and test sets that are used within the RNN
training recipe described above, and for final testing. The different
augmentation schemes below are applied to the training set; the dev
and test sets are never augmented.

Case 1: Speaker-independent case. Here we explore how
DA can improve generalization to a speaker not seen in the train-
ing set. For these experiments, we rely on the Boston University
Radio News Corpus (BURNC) [20], which contains prosodic an-
notation for multiple (6) speakers. We split the (uneven) amount
of data from each speaker into disjoint 90% and 10% training and
development sets respectively, Denoting by Tj{Z} the set of utter-
ances built by applying any of the 1 ≤ j ≤ 7 voice transforma-
tions described in Section 2 to an arbitrary set Z, we define the aug-
mented training set Ztr,aug

spkr =
{
Ztr

spkr,
⋃7

j=1 Tj{Ztr
spkr}

}
for each

speaker. We then follow a leave-one-speaker-out testing-evaluation
methodology with the following sets: Ts

.
=
{⋃6

n=1;n 6=s Z
tr,aug
spkr=n

}
,

Ds
.
=
{⋃6

n=1;n 6=s Z
dev
spkr=n

}
, Ss

.
= Zspkr=s, and s = {1, · · · , 6}

is a speaker ID.
Case 2: Speaker-dependent case. In this scenario we assume

we have access to a fixed amount of labeled data from a single tar-
get speaker of interest and construct several experiments that rely on
a corpus of recordings from a unit-selection speech-synthesis sys-
tem, a portion of which (3700 utterances) has been annotated with
pitch-accent and phrase-boundary labels. This corpus is initially
split into disjoint training, development, and test subsets containing
2984, 373, and 373 utterances respectively (corresponding to a 80%–
10%–10% partition). To investigate the data-size effect, the training
and development sets are downsized to form smaller subsets with
k = {5, 10, 20, 40, 80} percent of the initial number of utterances
contained in each. All the downsized sets form nested subsets, so
Xtr

5% ⊂ Xtr
10% · · · ⊂ Xtr (similarly for the downsized development

subsets). This is intended to mimic the case where more training la-
beled data becomes progressively available for the speaker. We then
consider the following augmentation schemes.

Voice-transformation-based DA: For any training condi-
tion indexed by the amount of data k, we define the augmented
training set as before Xtr,aug

k =
{
Xtr

k ,
⋃7

j=1 Tj{Xtr
k }
}

. Then
Tk

.
= Xtr,aug

k and Dk
.
= Xdev

k are used as training and dev sets.
To facilitate a direct comparison, a unique testing set S .

= Xtest (at
its original size, with no DA) is kept as the target testing set for all
k-sized conditions.

Use of additional labeled resources and no DA (Data Pool-
ing): This case represents a simple pooling of resources to improve
the performance of a target speaker, with no additional transforma-
tion of the original data. Although this is not a true DA technique
in the sense meant in this paper, we are interested in contrasting the
utility of augmenting in-domain data (the previous scheme) against
simply adding independent, but possibly out-of-domain, resources
with good-quality labels, when such resources are available (which
may not always be the case). To address this scenario, we reuse
the BURNC from Case 1 as the auxiliary (out-of-domain) corpus1

1Although both the synthesis corpus and BURNC contain carefully read
speech, they show noticeable stylistic differences. They have also been col-
lected under different recording conditions, sampled at different rates (22.05
vs 16kHz), and their prosodic annotations have been provided by different
labelers.
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to investigate the effect of data pooling as a function of training
data size on the target speaker. (The auxiliary corpus is assumed
to be of fixed size.) Recycling the previous notation, we define
the following data-size-dependent training and developments sets:
Tk

.
=
{
Xtr

k ,
⋃6

s=1 Zspkr=s

}
and Dk

.
= Xdev

k . As before, the test
set remains S .

= Xtest

Data pooling combined with data augmentation: In this final
scheme we also assume access to an auxiliary labeled resource of
fixed size, but exploit it within a DA framework to examine how it
impacts the performance on a target speaker of interest as we vary the
amount of in-domain training data (i.e., the previous 2 schemes com-
bined). As before, we define the relevant learning sets as follows:
Tk

.
=
{
Xtr,aug

k ,
⋃6

s=1 Z
tr,aug
spkr=s

}
, Dk

.
= Xdev

k , and S .
= Xtest

6. RESULTS AND CONCLUSION

Tables 2 and 3 summarize the results of the various experiments
previously outlined for the speaker-independent (SI) and -dependent
(SD) cases. A few remarks are in order:

Table 2. Summary of speaker-dependent experiments showing clas-
sification error (%) for baseline and augmented systems. Shown in
parenthesis on the augmented column is also the relative error re-
duction (%), defined so that a positive sign (in bold) corresponds
to a reduction with respect to the baseline. The top speaker column
also shows the number of word tokens for each speaker. The average
errors (WAvg) are weighted with respect to these counts.

Task Speaker Baseline Augmented

Ph
ra

se
B

dr
y.

F1 (3,681) 7.39 7.06 (4.47)
F2 (12,697) 7.54 7.08 (6.10)
F3 (2,733) 6.99 5.74 (17.88)
M1 (4,955) 7.09 5.71 (19.46)
M2 (3.537) 7.63 7.15 (6.29)
M3 (1,935) 4.55 4.70 (-3.30)

WAvg. 7.21 6.58 (8.74)

Pi
tc

h
A

cc
en

t F1 12.47 12.66 (-1.52)
F2 14.54 13.71 (5.71)
F3 13.50 12.44 (7.85)
M1 13.65 13.57 (0.59)
M2 12.61 11.42 (9.44)
M3 12.71 11.89 (6.45)

WAvg. 13.69 13.04 (4.75)

– We observe improvements for the two tasks considered under one
or more of the data-augmentation schemes explored over a strong
state-of-the-art baseline, which we have previously validated against
other strong classification approaches [14].
– On the average, the proposed DA offers a substantial relative im-
provement in its generalization to speakers unseen in the training
data. For each of the tasks, however, there is one speaker for whom
the performance worsens, and we continue to explore ways in which
the DA schemes and/or the training recipe can be made more robust
to improve the worst-case performance.
– DP by itself, in addition to not always being feasible in terms of
resource availability, is not as reliable as the proposed DA scheme
(possibly due to domain missmatches). This is particularly notice-
able for the boundary classification task, where DA never performs
worse than the baseline, and can offer considerable reductions when
the amount of training data is small ( 7.5-9.7% relative). We ob-
serve a much less consistent pattern in terms of the utility of the DP

scheme. For the accent task, we see that DA can lead to a decreased
performance with respect to the baseline, but in this case too, it
provides a more consistent behavior than the DP scheme alone.
– Merging external resources and applying the transformation
(DA+P) provides the best scheme, with better performance than ei-
ther DA or DP alone. This is most notable in the full-data condition,
where it substantially beats a state-of-the-art baseline performance
to give us the best numbers we have obtained to date for this task and
dataset. There is only one case in which this scheme fails to beat the
baseline (pitch-accent classification with 60% of the data), but this
may be due to the fact that the baseline attains, uncharacteristically,
its best-performance at this point. (Notice that this point is an outlier
with respect to the monotonic behavior we otherwise observe as a
function of data size for the baseline accent task.)

Table 3. Summary of speaker-dependent experiments showing clas-
sification error (%) for baseline and augmented systems using data-
augmentation (DA), data-pooling (DP), and data-augmentation-
and-pooling (DA+P) schemes. Shown in parenthesis is the relative
error reduction (RER) (%), defined so that a positive sign (in bold)
corresponds to a reduction with respect to the baseline.

Phrase Boundary Error (RER) (%)
Size (%) Base DA DP DA+P

100 6.53 6.51 (0.31) 6.83 (-4.59) 6.08 (6.89)
80 6.85 6.76 (1.31) 6.92 (-1.02) 6.56 (4.23)
60 7.17 6.69 (6.69) 7.27 (-1.39) 7.03 (1.95)
40 7.76 7.24 (6.70) 7.37 (5.03) 7.47 (3.74)
20 8.05 7.64 (5.09) 8.69 (-7.95) 7.97 (0.99)
10 9.69 8.75 (9.70) 9.03 (6.81) 8.29 (14.45)
5 10.46 9.68 (7.46) 9.17 (12.33) 9.80 (6.31)

Pitch Accent Error (RER) (%)
100 8.47 8.37 (1.18) 8.44 (0.35) 7.78 (8.15)
80 8.53 8.88 (-4.10) 8.44 (1.055) 8.19 (3.99)
60 8.41 8.83 (-4.99) 8.59 (-2.14) 8.47 (-0.71)
40 8.93 8.88 (0.56) 8.97 (-0.45) 8.91 (0.22)
20 9.49 9.08 (4.32) 9.56 (-0.74) 8.86 (6.64)
10 9.66 9.49 (1.76) 10.27 (-6.31) 10.27 (-6.31)
5 11.83 10.37 (12.34) 10.56 (10.74) 11.24 (4.99)

These initial results prompt a few lines of further inquiry in ad-
dition to the need for improved worst-case robustness already men-
tioned. Two parameters, kept constant in these experiments, could
play an important role in the performance of the different schemes:
the augmentation ratio (i.e., how many times we use a transformed
version of a base utterance), and the number of distinct transforma-
tions injected into the training set. Since each of the 7 transforms
described has been applied to the entire training set, both of these
parameters are identical in the current experiments. We would like
to explore the effect of the first to see if we can establish the point
where the utility of augmentation has saturated and/or begun to hurt
performance. Similarly, we would like to increase the second by al-
lowing more stochastic variability in the transforms since that could
lead to better generalization. Although we purposely omitted any
knowledge of the target speaker in our SI experiments to investigate
the case of speakers fully unseen at training time, the case where
one has access to some data from a target speaker, and no labels, is
of interest. In such case, we would like to explore the advantage of
DA techniques that instead (or additionally) morph the training set to
approximate the target, so as to create data that better match testing
conditions. All the these remain the topic of future work.
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