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ABSTRACT 

We propose a novel application of the acoustic- to- 

articulatory inversion (AAI) towards a quality assessment of 

the voice converted speech. The ability of humans to speak 

effortlessly requires the coordinated movements of various 

articulators, muscles, etc. This effortless movement 

contributes towards a naturalness, intelligibility and 

speaker’s identity (which is partially present in voice 

converted speech). Hence, during voice conversion (VC), 

the information related to the speech production is lost. In 

this paper, this loss is quantified for a male voice,  by 

showing an increase in RMSE error (up to 12.7 % in tongue 

tip) for voice converted speech followed by showing a 

decrease in mutual information (I) (by 8.7 %). Similar 

results are obtained in the case of a female voice. This 

observation is extended by showing that the articulatory 

features can be used as an objective measure. The 

effectiveness of the proposed measure over MCD is 

illustrated by comparing their correlation with a Mean 

Opinion Score (MOS). Moreover, the preference score of 

MCD contradicted ABX test by 100 %, whereas the 

proposed measure supported ABX test by 45.8 % and 16.7 

% in the case of female-to-male and male-to-female VC, 

respectively. 

Index Terms— voice conversion, acoustic-to-

articulatory inversion, articulatory features.
 
 

1. INTRODUCTION 

Voice Conversion (VC) modifies the perceived speaker’s 

identity from a source-to-target speaker in a given speech 

utterance [1-3]. During VC, some of the important details in 

the speech signal are lost due to inaccurate spectral mapping 

and statistical averaging (i.e., oversmoothing) of acoustic 

speech sound units. Investigating the evaluation measure 

that truly quantifies the naturalness and speaker similarity of 

a voice converted speech is still an open research problem 

[2]. Subjective measures are time-consuming, expensive and 

their accuracy highly depends on the cognitive factors (such 

as alertness) of the listener [4]. Objective measures, on the 
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other hand, often lack the intuitiveness as well as do not 

account for the perceptual quality [5].  

Machine generated speech, i.e., any computational way 

of producing the speech signal can never match the way 

humans articulate to produce speech [6], [7]. In addition, the 

quality and intelligibility of a voice converted speech are 

governed mainly by the accurate production of vowels, 

dynamic or transitional sounds (such as diphthongs, liquids, 

glides and stops) [8]. Thus, the study of an articulatory 

parameters (those which are critical in the production of 

these sounds) could be useful in the voice quality 

measurement [9], [10], [11]. This idea motivated authors to 

investigate the difference between a voice converted speech 

and a natural speech in terms of articulatory parameters. To 

the best of authors' knowledge, this is in contrast to the 

previous objective measures which measure the quality in 

terms of information loss in the spectral characteristics 

during VC [3], [12-14].  The effectiveness of articulatory 

features has been shown in various applications such as 

visual aids for training speech [15], speaker recognition 

[16], speech recognition [17], accent conversion [18], etc. 

The VC is an another application where the possibility of 

using articulatory parameters have been explored. However, 

it appeared that the use of articulatory parameters was not 

straightforward for improving VC [19].  

 In this paper, we investigate the novel application of 

articulatory features for the quality assessment of a voice 

converted speech. This study investigates the following 

questions: 1) whether the articulatory information is lost 

during the VC process? and if so, 2) how can one quantify 

the information loss? To address this, we propose a novel 

Estimation Error (EE), an articulatory features-based 

objective measure. The subjective score, i.e., Mean Opinion 

Score (MOS) was taken to evaluate the VC systems. The 

high correlation coefficient between EE and MOS showed 

the effectiveness of the proposed measure over state-of-the-

art Mel Cepstral Distance (MCD) measure [10]. Moreover, 

the preference scores also showed that EE is more reliable 

than the MCD. In particular, MCD contradicted ABX test 

whereas EE supported it to the large extent. 

2. EXPERIMENTAL SETUP 

This Section briefly discusses the state-of-the-art techniques 

which are used to develop VC and acoustic-to-articulatory 

inversion (AAI) systems. 
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2.1. MOCHA Database 

The Multichannel Articulatory (MOCHA) database [20] 

consists of a simultaneously recorded (460 phonetically 

diverse British English TIMIT sentences) acoustic and 

articulatory data obtained from one male and one female 

speaker. The audio signal is sampled at 16 kHz and 

Electromagnetic Articulography (EMA) data is sampled at 

500 Hz. The EMA data consists of X and Y coordinates of 9 

receiver sensor coils attached to 9 points along the 

midsaggital plane, namely, the lower incisor or the jaw (li_x, 

li_y), upper lip (ul_x, ul_y), lower lip (ll_x, ll_y), tongue tip 

(tt_x, tt_y), tongue body (tb_x, tb_y), tongue dorsum 

(td_x,td_y), velum (v_x, v_y), upper incisor (ui_x, ui_y) and 

bridge of the nose (bn_x, bn_y). The upper incisor and 

bridge of the nose are used as a reference coils. The 

articulatory data obtained from 14 channels corresponding 

to first seven coils except the reference coils are used as the 

articulatory features in our experiments.  

2.2. Voice Conversion (VC) System 

Among the various available VC techniques [1-3], [21-23]  

here, a GMM-based [3] and a BiLinear Frequency Warping 

plus Amplitude Scaling (BLFW+AS) [21] methods were 

used for transforming the spectral parameters. In a GMM-

based VC, joint source and target spectral feature vectors 

were modeled using a GMM and then conversion was 

performed using a maximum likelihood estimation (MLE) 

[3]. On the other hand, nonlinear BLFW technique 

transforms the frequency-axis of the source-to-target 

speaker’s vocal-tract spectrum and AS method was used to 

transform the relative amplitude of the spectrum for spectral 

parameter conversion [21]. The excitation source parameter 

(i.e., F0) was transformed using a mean-variance method in 

the log-domain [24]. 

2.3. Acoustic-to-Articulatory Inversion (AAI) System 

Among the various available AAI techniques [15], [25-26] 

here, Generalized Smoothness Criterion (GSC)-based, AAI 

system is used for the articulatory parameterization of a 

voice converted speech [26]. The estimated trajectories 

obtained using GSC were optimal in the sense that a) the 

estimated trajectories have minimum energy in the high-

frequency region and b) the weighted difference between 

estimated and original trajectories was minimum. GSC has 

the advantage that it imposes the articulator-specific 

constraints which gives a better estimation over methods 

using a fixed smoothness constraints [26]. 

3. PROPOSED OBJECTIVE MEASURE 

 

The experiments were conducted to verify and quantify the 

possible loss of an articulatory information after VC. For 

this, a GMM-based VC system with 400 training utterances 

and 64 mixture components was used. Let the target and the 

voice converted acoustic vector be given by Xt and Xtv, 

respectively. Furthermore, let EMA vector of the target be 

Yt and estimated EMA vector from Xt and Xtv be Zt and Ztv, 

respectively.  

In order to verify the loss in speech production 

information after VC, mutual information (I) was computed 

[27]. Since Xt, Yt and Xtv are discrete, their probability 

distributions are calculated by quantizing the acoustic and 

the articulatory spaces using K-means clustering algorithm 

(K=64) [28]. Mutual Information (I) calculated between 

( ( ), ( ))Q Qt tX Y and ( ( ), ( ))Q Qtv tX Y is shown in Table 1. Here, 

( ), ( )Q Qt tX Y are quantized acoustic and articulatory spaces, 

respectively, and ( )Q tvX  is quantized voice converted 

acoustic space. Table 1 shows that the information related to 

the articulators in acoustic vector reduces after VC both for 

male (i.e., the target is a male) and female (i.e., the target is 

a female) voice converted speech. 

Table 1: Comparison of  Mutual Information Before and After VC 

I (in bits) Male Voice Female Voice 

( ( ), ( ))I Q Qt tX Y  1.402 1.504 

( ( ), ( ))I Q Qtv tX Y  1.28 1.389 
 

The following steps were used to estimate the articulatory 

parameters of a voice converted speech (which is illustrated 

in Fig. 1) in order to quantify above mentioned loss. 

 Ztv and Zt were estimated using GSC-based technique. 

 Ztv, Zt and Yt were time-normalized (by applying DTW 

on Xtv and Xt) to obtain DZtv, DZt and DYt, 

respectively.  

 The estimation accuracy for each articulator position 

was compared by computing % Δ given by : 

% change (∆) =
   

100


tv tt

tt

RMSE RMSE

RMSE
,       (1) 

where RMSEtt is the average root mean square error 

(RMSE) calculated between DYt and DZt and RMSEtv is an 

average RMSE between DYt and DZtv. 
 

 

 

 

 

 

 
 

 

Fig. 1: Proposed system architecture for estimating articulatory features from voice conversion (VC) system.  
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Table 2: Comparison of an average RMSE in mm (along with standard deviation (SD) of RMSE is shown in the bracket). The dotted 

box indicates maximum % Δ (i.e., tongue tip is not estimated accurately compared to all other articulators) 

 

Male 

Voice 

Articulators li_x li_y ul_x ul_y ll_x ll_y tt_x tt_y tb_x tb_y td_x td_y v_x v_y 

RMSEtt (SD) 
0.6 

(0.1) 

1.11 

(0.3) 

0.77 

(0.2) 

1.36 

(0.2) 

1.28 

(0.3) 

2.09 

(0.4) 

2.83 

(0.8) 

3.5 

(0.8) 

2.66 

(0.6) 

2.56 

(0.5) 

2.35 

(0.6) 

2.67 

(0.5) 

0.56 

(0.2) 

1.19 

(0.5) 

RMSEtv (SD) 
0.63 

(0.1) 

1.21 

(0.2) 

0.81 

(0.2) 

1.47 

(0.3) 

1.39 

(0.3) 

2.35 

(0.4) 

3.19 

(1) 

3.87 

(0.7) 

2.91 

(0.7) 

2.86 

(0.6) 

2.58 

(0.7) 

2.94 

(0.6) 

0.62 

(0.2) 

1.29 

(0.5) 

%Δ 5 9 5.2 8.1 8.6 12.4 12.7 10.6 9.4 11.7 9.8 10.1 10.7 8.4 

 

Female 

Voice 

RMSEtt (SD) 
0.87 

(0.2) 

1.36 

(0.3) 

1.01 

(0.4) 

1.36 

(0.3) 

1.32 

(0.3) 

2.92 

(0.6) 

2.72 

(0.6) 

2.89 

(0.6) 

2.49 

(0.5) 

2.61 

(0.5) 

2.29 

(0.5) 

2.7 

(0.5) 

0.45 

(0.2) 

0.49 

(0.2) 

RMSEtv (SD) 
0.93 

(0.2) 

1.5 

(0.3) 

1.1 

(0.4) 

1.41 

(0.3) 

1.42 

(0.3) 

3.22 

(0.7) 

3.2 

(0.7) 

3.36 

(0.6) 

2.88 

(0.6) 

2.99 

(0.5) 

2.61 

(0.6) 

2.94 

(0.4) 

0.52 

(0.2) 

0.54 

(0.2) 

%Δ 6.9 10.3 8.9 3.7 7.6 10.3 17.6 16.3 15.7 14.6 14 8.9 15.6 10.2 
 

Table 2 shows that RMSEtv>RMSEtt for both male and 

female voice converted speeches, which is indicated by 

positive % Δ for all the articulators. In particular, among all 

the articulators, tongue tip (known to be critical for the 

speech production [7]) shows highest % Δ.  

The results indicate that the AAI system poorly estimates 

the articulatory trajectories of a voice converted speech. The 

difference in the estimation accuracy is utilized to propose 

the Estimation Error (EE), as an objective measure. The EE 

measures the distance between articulatory trajectories of 

voice converted speech and the target speech. Estimation 

error (EE) (in mm), is defined as: 

 
2

1 1

1
d d

N M
n n

n d

EE
N  

 
  
 
 
  tv tDZ DY ,                (2) 

where for n
th 

frame     
  and      

 are the time–aligned d
th

-

dimensional measured and estimated trajectory, 

respectively. In addition, N is the length and M is the 

dimensionality of the articulator trajectory. 

4. EXPERIMENTAL RESULTS 

4.1. Details of VC and AAI system 

The female speech is well known to have a spectral 

resolution problem (due to the serious interaction of high 

pitch (F0) source harmonics with vocal tract spectrum) [30]. 

Furthermore, the female speech has relatively small pitch 

period (T0) due to the lesser mass of vocal folds than the 

male counterpart (in the range of 4-5 ms). As a result, the 

female speakers are possibly not able to produce as much 

glottal activity (such as manner in which vocal folds open or 

close) as compared to the male speaker. Hence, it is known 

that the male-to-female (M-F) VC is more difficult [29-30]. 

Here, the VC systems based on GMM and BLFW+AS were 

built for both M-F and female-to-male (F-M) cases. For this, 

the number of training utterances (i.e., 10, 25, 50, 200 and 

400) and the number of mixtures in GMM (i.e., m=8, 16, 

32, 64) were varied. 24-D Mel Generalized Cepstral (MGC) 

coefficients were extracted from the speech signals over 25 

ms window with 5 ms shift for both VC approaches. The 

training sentences were selected based on maximum 

diphone coverage [3]. For AAI, out of 400 (from 460  

 

MOCHA-TIMIT) sentences used for training of VC system, 

368 sentences for the development set and 55 for test set 

were used. 14-D MFCC was calculated per frame (of 20 ms 

window with a frameshift of 10 ms) for inversion. AAI 

systems were built for both male and female voices. 

The accuracy of AAI system is measured by calculating 

an average RMSE and an average correlation coefficient 

(CC) [26]. Our AAI system shows the lowest estimation 

accuracy for ll_y (average RMSE=2.92, average CC=0.74) 

and highest for v_x (average RMSE=0.45, average CC= 

0.70) in case of a female. For a male, the estimation 

accuracy is the lowest for tt_y (average RMSE=3.5, average 

CC=0.70) and highest for v_x (average RMSE=0.56, 

average CC=0.64). 

4.2. Evaluation of VC systems 

For a given training utterance set, the one showing the least 

MCD for different values of m was selected for subjective 

evaluation. This was carried out for GMM and BLFW+AS-

based M-F and F-M VC systems. The following sub-Section 

discusses the analysis of subjective and objective measures 

4.2.1. Correlation of EE with objective measure 
 

Fig. 2 shows plot between EE and MCD for the selected 

systems. These plots indicate that EE and MCD are partially 

correlated. In particular, Fig. 2 (a)-(b) show that EE and 

MCD correlate well for GMM–based VC as compared to 

BLFW+AS-based VC (as shown in Fig. 2(c)-(d)). 

 
 

Fig.2: MCD vs. plot for selected systems (a)-(b) M-F and F-M 

GMM-based VC and (c)-(d) M-F and F-M BLFW+AS-based VC. 
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One of the possible reasons for such a high correlation could 

be that articulatory parameters were estimated from acoustic 

features itself. However, two sounds that are closer in 

cepstral or acoustic-domain may not be close in articulatory-

domain, because AAI is a non-unique and nonlinear [15], 

[26]. Moreover, it is known that MCD may not always 

correlate well with subjective scores [31-32]. Therefore, the 

differences in articulatory-domain were exploited for 

determining the quality of the VC systems. To verify this, 

the Pearson correlation coefficient (CC) of MCD, EE with 

subjective measures were calculated. 

4.2.2. Comparison of EE with subjective measures 

For a subjective measure, MOS from 15 subjects (9 male 

and 6 female with age group of 21-25 years) was taken for 

absolute rating [33]. In this test, we randomly played 4 

sentences from each VC system (selected for evaluation). 

The subjects were asked to score them on a 5-point scale 

based on the naturalness of speech signal. CC of MCD and 

EE with MOS score was calculated using the Pearson 

Correlation Coefficient. MOS score, MCD and EE for 

selected systems along with their CC are shown in Table 3 

and Table 4, respectively. 

Table 3: Subjective and objective scores of various VC systems 

Approach Systems* 
M-F VC F-M VC 

MOS MCD EE MOS MCD EE 

BLFW+AS 

10_64 2.45 5.66 7.60 2.35 4.87 8.05 

25_64 2.65 5.65 7.68 2.45 4.84 7.72 

50_64 2.53 5.71 7.59 2.33 4.97 7.90 

100_64 2.63 5.99 7.96 2.68 5.36 8.0 

200_64 2.4 6.09 8.17 2.63 5.26 8.29 

400_64 2.33 5.89 8.11 2.6 5.12 8.03 

GMM 

10_32 2.48 3.97 7.76 2.1 3.98 7.28 

25_32 2.3 4.04 7.29 2.2 3.92 6.92 

50_64 2.53 3.80 7.42 2.15 3.93 7.12 

100_64 2.53 4.24 7.61 2.18 4.16 7.03 

200_64 2.23 4.08 7.76 2.3 4.09 7.36 

400_64 2.35 4.235 7.438 2.225 4.09 7.04 
*Systems: Number of training utterances_mixture components 

Table 4:Correlation coefficients of MCD and EE with MOS 

ObjectiveMeasure 
GMM BLFW+AS 

M-F F-M M-F F-M 

MCD -0.16 0.41 -0.33 0.87 

EE -0.7 0.16 -0.5 0.46 
 

Ideally, subjective and objective scores should have a 

negative correlation. Since higher the MOS better is the 

quality of speech, as opposed to MCD and EE where higher 

the score lesser is the quality. Table 4 shows that for M-F 

MCD and EE are showing negative CC for both VC 

techniques. It can be seen from Table 4 that EE is more 

negatively correlated with MOS in the case of M-F. On the 

other hand, in the case of F-M, EE is relatively less 

positively correlated compared to MCD. Hence, it is found 

that the interpretation of a quality given by EE was more 

preferable over MCD measure. While conducting the MOS 

test, it was observed that there were minute perceptual 

differences within VC systems used for evaluation and 

subjects had difficulty in giving MOS scores. This is evident 

from Table III, which indicates a very small change in MOS 

scores. In order to avoid this ambiguity, ABX test was 

conducted with the same 15 subjects where 24 utterances 

were played randomly from both approaches of VC. In this 

test, the subjects were asked to choose between A and B 

based on the naturalness and similarity of the utterance 

compared to the target sample X. The scores of this test are 

indicated as ABX and naturalness in Figure 3 (a)-(b). On the 

similar lines, we also calculated the preference scores of 

these utterances using MCD and EE. Out of A and B that 

gave least value of MCD and EE, was preferred and the 

preference score (in %) are shown in Figure 3(a)-(b). 

From Figure 3(a)-(b), it can be seen that for both M-F 

and F-M VC, MCD gave 100 % preference to GMM-based 

VC method. However, unlike MCD which gave 0 % 

preference to BLFW+AS VC system, EE gave 45.8 % 

preference score in case of F-M and 16.67 % preference 

score in the case of M-F. Hence, EE is relatively more 

reliable than MCD, which completely nullifies the 

possibility of BLFW+AS to be better in any case. Thus, we 

proposed the EE as an objective measures for assessing the 

quality of VC. 
 
 

 
 

 

Fig. 3: Preference score based on MCD, EE, naturalness and ABX 

test for GMM and BLFW VC systems (a) M-F (b) F-M. Equal 

means, subjects could not judge and give equal preference score. 

5. SUMMARY AND CONCLUSIONS 

This study investigated the objective measure which is 

based on the articulatory parameters. In particular, after VC, 

the articulatory parameters related information is lost which 

is quantified by a proposed objective measure, namely, EE. 

Though MCD and EE were found to be partially correlated 

and gave almost a similar kind of interpretation, EE had 

more correlation with MOS. The experiments showed that 

in the case of preference score, where MCD was 100 % 

contradicting subjective measure, which is highly unlikely. 

On the other hand, EE supported subjective measure 45.8 % 

and 16.67 % for F-M and M-F VC, respectively. Hence, the 

proposed measure EE is a reliable objective measure for 

measuring the quality of a voice converted speech. Our 

future research efforts will be directed towards investigating 

the articulators that are more responsible for capturing the 

voice quality of VC speech. 
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