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ABSTRACT�

Recurrent neural networks (RNNs) and their bidirectional 
long short term memory (BLSTM) variants are powerful 
sequence modelling approaches.  Their inherently strong 
ability in capturing long range temporal dependencies allow 
BLSTM-RNN speech synthesis systems to produce higher 
quality and smoother speech trajectories than conventional 
deep neural networks (DNNs).  In this paper, we improve the 
conventional BLSTM-RNN based approach by introducing a 
multi-task learned structured output layer where spectral 
parameter targets are conditioned upon pitch parameters 
prediction.  Both objective and subjective experimental 
results demonstrated the effectiveness of the proposed 
technique. 

Index Terms text-to-speech, acoustic model, multi-
task learning, structured output layer, deep bidirectional long 
short-term memory  

1. INTRODUCTION�
 
A central task of statistical parametric text-to-speech (TTS) 
synthesis systems is to learn the complex non-linear mapping 
from abstract linguistic features to their acoustic 
representation [1][2].  Statistical parametric TTS models 
based on hidden Markov models (HMMs) [3][4] produce 
low-level speech waveforms from high-level symbol 
sequences via intermediate acoustic feature sequences.  This 
is commonly achieved using decision tree based parameter 
tying approaches that can lead to data partitioning and poor 
generalization. 

Inspired by the intrinsically hierarchical process of human 
speech production and by the successful application of deep 
neural networks (DNNs) to automatic speech recognition 
(ASR) systems [5], deep learning based speech synthesis 
techniques have become increasingly popular in recent years.  
These techniques use a deep model architecture with multiple 
hidden layers to provide: high-level abstract and 
discriminative feature learning; shared parameters to avoid 
data partitioning and improve generalization; and long range 
temporal context modelling.  Earlier works along this line 
include deep belief networks (DBNs) [6][7], and deep neural 
networks (DNNs) [8][9][10].  In order to learn longer span 
temporal information, recurrent neural networks (RNNs) and 

their bidirectional long short term memory (BLSTM) variants 
[11][12][13] in particular,  have also been proposed in 
previous research [14][15].  Their inherently strong ability in 
capturing long range temporal dependencies allow BLSTM-
RNN speech synthesis systems to produce higher quality and 
smoother speech trajectories than conventional deep neural 
networks. 

In conventional speech synthesis systems based on 
BLSTM-RNNs, or DNNs in general, the output layer is 
commonly constructed to produce acoustic features that 
concatenate spectral and pitch contour parameters.  Two 
issues arise when using this form of output layer architecture.  
First, it is difficulty to model the dependency of spectral 
features on pitch contour parameters, for example, voicing 
decision.  Second, due to the difference in dimensionality 
between spectral and pitch features, a larger part of network 
connections is used to model spectral features prediction.  
This can bias the gradient statistics accumulated at 
intermediate hidden layers to those associated with spectral 
features generation, while those obtained from the pitch 
parameter prediction unduly suppressed.  It is therefore 
preferable to introduce additional controllability over the 
weighting assigned to the error costs incurred in spectral 
features generation and those in pitch parameter prediction 
during model training. 

In order to address these issues, this paper proposes the 
use of a structured output layer (SOL) [16] for conventional 
BLSTM-RNNs where the spectral features outputs are set to 
be dependent on the prediction of pitch contour parameters.  
In order to further appropriately balance the error cost 
functions associated with spectral feature and pitch parameter 
targets, the proposed structured output layer BLSTM-RNN 
models are trained using a multi-task learning [17][18] 
approach.  Both objective and subjective experimental results 
suggest the proposed technique improved the quality and 
naturalness of synthetic speech over the baseline BLSTM-
RNN synthesis system. 

The rest of the paper is organized as follows.  Section 2 
proposes modified BLSTM-RNN model architecture with a 
structured output layer.  Section 3 presents the multi-task 
learning based training for the proposed structured output 
layer BLSTM-RNNs.  Objective and subjective experimental 
results are presented in section 4.  The conclusions are drawn 
and future work discussed in section 5. 
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2. STRUCTURED�OUTPUT�LAYER�BLSTMRNNS�

Human speech is produced by the cooperation of vocal folds 
and articulators.  The vibrating vocal folds generate the 
laryngeal sound via periodically regulating the airflow from 
the lungs and then the articulators form a filter for the 
laryngeal sound to generate human sound [19].  In statistical 
parametric speech systems, pitch parameters are used to 
represent the state of the vocal folds while the spectral 
parameters are those associated with the articulators.  These 
two types acoustic features are highly related.  Their 
correlation has been utilized for various purposes in previous 
research [20][21]. 

As discussed in Section 1, in conventional BLSTM-RNNs 
based speech synthesis systems, the output layer is normally 
constructed to produce acoustic features that concatenate 
spectral and pitch parameters.  In order to model the depend-
ency of spectral features on pitch contour parameters, such as 
probability of voicing, and appropriately adjust the balance 
between the error costs incurred in acoustic features 
generation and pitch parameter prediction during model 
training, a modified DBLSTM-RNN model architecture with 
a structured output layer (SOL) is proposed in this paper.  
This is shown in Figure 1. 

Instead of directly predicting concatenated acoustic 
feature outputs, the network output layer is modified to 
perform two separate prediction tasks for spectral features 
and pitch parameters respectively.  The main task of spectral 
feature prediction is further conditioned upon the auxiliary 
task of pitch parameter generation.  This is realized by 
feeding the pitch parameter generation task's hidden layer 
output  through an activation function , such as Softmax 
or ReLU, to model the correlation between the two tasks 
before being augmented to the hidden layer output  while 
the weight matrix  used to connect the two tasks is applied. 

In the conventional multi-task formulation where no 
between task dependency is modelled, the two tasks share the 
same BLSTM-RNN hidden layers , and the 
prediction of spectral and pitch parameters are computed as 
the following, 

                                                 (1) 
                                                         (2) 

                                                (3) 
                          (4) 
where  and  are predicted spectral and pitch parameter 
outputs respectively.    and    are the 
weight matrices and bias vectors connecting the shared 
BLSTM-RNN hidden layer  with the outputs associated 
with the two tasks.  and  are the linear output 
activation functions employed to produce the final predicted 
spectral feature and pitch parameter outputs. 

In contrast, the proposed SOL based approach shown in 
Figure 1 introduces additional dependency of the 
primary spectrum prediction task on the auxiliary pitch 

parameter prediction task. The main spectral feature outputs 
are thus modified as, 

                           (5) 
                                                             (6) 

Precursors of the same SOL structure have been 
previously studied for acoustic modelling in speech 
recognition systems [16] and recurrent neural network 
language modelling for predicting morphologically 
decomposed stem and suffix features [22]. 

C

Pitch output layerSpectrum output layer

SOL

  
Figure�1: Overall structure of DBLSTM-RNN with SOL.  In 
this network, the tasks share the same BLSTM hidden 
representations and the spectrum prediction can be benefit by 
using the hidden layer of pitch prediction.  are the frame-
aligned linguistic inputs. 

 
3. MULTITASK�LEARNING�OF�SOL�BLSTMRNNS�

 
In common with the conventional multi-task learning 
framework, structured output layer BSTLM-RNNs can be 
trained by minimizing a global cost function expressed as a 
weighted sum of the two task specific separate error costs. 
This is given by 

                                        (7) 
where  and   are the costs generated by the main task 
(spectral features) and the auxiliary task (pitch parameters) 
computed as mean squared errors (MSE), 

                                    (8) 
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                                    (9) 
where  is the total length of the input linguistic sequence,  
is the mini-batch size, and  is a tunable weighting parameter 
adjusting the contribution from the main and auxiliary tasks. 

Hence, the global error cost in (7) can be re-expressed as 
(10) 

The gradients used to update all the parameters in the SOL 
BLSTM-RNN network are then computed as the weighted 
average gradient statistics computed over both tasks: 

                   (11) 

where  presents all the parameters of the model including 
those in in the hidden layers. 

The proposed SOL BLSTM-RNN model inherits the 
stronger generalization performance and robustness of 
conventional multi-task learning [16][17][18] facilitated by 
shared hidden layers and joint training over multiple tasks. 
The use of a structured output layer further allows both the 
regularization properties of the comparatively simpler 
auxiliary task of predicting pitch contour variation and its 
direct effect on the primary spectral feature generation task to 
be fully exploited. 

 
4.�EXPERIMENTS�

4.1�Experimental�setup�

The TH-Coss speech corpus [23] containing 5429 phoneti-
cally and prosodically rich utterances from a native Mandarin 
female speaker is used as speech dataset in experiments: 5000 
utterances (around 8.5 hours) as training set, 200 utterances 
as validation set and the rest 229 utterances are reserved as 
test set.  Speech signals are sampled at 16K Hz.  Statistical 
parameters including 40 dimensional Mel-frequency cepstral 
coefficients (MFCCs), 25 dimensional band aperiodicity 
(BAPs), logarithmic fundamental frequency (log F0) and 
Voiced/Unvoiced flag (V/UV) are extracted with 
STRAIGHT [24].  

The input linguistic features vector is of 329 dimensions 
including tri-syllable, syllable tone, positional information, 
word and phrase related information and so on, where 291 are 
binary features for categorical linguistic contexts and the rest 
are numerical features.  Specially, three numerical position 
features were appended: the syllable position within the 
sentence, the frame position within syllable and frame 
position within the sentence.  The input numerical features 
are normalized to the range of (0, 1] and the frame level 
forced alignment upon the training data is processed with a 
HMM system implemented by HTS toolkit [3].  The target 
acoustic features are normalized to zero mean and unit 
variance before training.  Four different models have been 
implemented for comparison: 

DNN: baseline DNN-based approach containing 4 
hidden layers with 1024 nodes each.�

DBLSTM: conventional DBLSTM-based approach 
containing 2 BLSTM hidden layers with 512 nodes per 
layer (256 forward nodes and 256 backward nodes, 
same setting for the following BLSTM derived 
approaches) and conventional output layer. 
MTLDBLSTM: multi-task learning DBLSTM-based 
approach containing 2 BLSTM hidden layers with 512 
nodes per layer and two independent output layers.  
The global cost weighting constant is 0.9. 
SOLDBLSTM: the proposed MTL DBLSTM with 
structured output layer approach containing 2 BLSTM 
hidden layers with 512 nodes per layer and one 
structured output layer.  The weight used in (7) is 0.9, 
and tanh function is used as activation function .  
Selection of  and  

The outputs of DNN-based system are acoustic features 
for speech synthesis that consist of MFCCs, BAPs, log F0, 
their dynamic counterparts (deltas and delta-deltas) and 
V/UV, totally 199 dimensions.  For the other DBLSTM based 
approaches, the output contains all the features except the 
dynamic counterparts, totally 67 dimensions.  For MTL-
DBLSTM based approaches, the two output layers are for 
spectrum (MFCCs and BAPs) and pitch (log F0 and V/UV). 

 Specially, the output features from DNN based system 
are fed into maximum likelihood parameters generation 
(MLPG) [4] module with pre-computed variances for 
smoothing before synthesis.  In DBLSTM based systems, 
MLPG post-processing is skipped.  STRAIGHT vocoder is 
employed to synthesize speech with predicted acoustic 
features from different aforementioned approaches.   

Backpropagation through time (BPTT) [25][26] is 
employed to train DBLSTM-based approaches by unfolding 
RNNs into standard feed-forward networks through time 
steps.  Mini-batch-based Adam algorithm [27] is used as the 
optimizer with Keras [28] deep learning framework, which 
uses Theano [29] as backend, to implement and evaluate the 
different approaches.   

4.2�Hyperparameters�in�structured�output�layer�

For proposed SOL DBLSTM-RNN model, the selection of 
activation function  as well as the value of  in (7) would 
dramatically influence the performance of predictions. 
Table 1 presents the objective evaluation of spectrum 
prediction using different activation functions.  The tanh 
functions was found to be of the best performance 
outperforming other activation functions and had been 
chosen as the default .  Figure 2 illustrates the Mel-CD of 
spectrum features and RMSE of F0 when use different 

as the final value for the proposed system. 

Table�1: Mel-CD (dB) of spectrum prediction with different 
.��

 -activation�
Linear Softmax Sigmoid ReLU Tanh 
5.3226 5.3423 5.3790 5.3041 5.2886 
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Figure�2: Mel-CD of spectrum prediction and RMSE of 

 

4.3�Objective�evaluation�

In objective evaluation, the generated features are assessed 
by comparing the distortions between the features extracted 
from natural speech in the test set and the generated ones 
predicted from different systems.  Specifically, the duration 
extracted from natural speech is used directly in prediction.  

As illustrated in Table 2, the conventional DBLSTM 
based system outperforms DNN baseline on MFCC 
prediction with 10% relative improvement.  By using MTL 
style, the F0 trajectories generation gains a 6% relative 
improvement while the MFCC generation is on par.  By 
employing SOL, the MFCC trajectories generation and F0 
trajectories generation gain a further optimization with 1.3% 
and 3.1% relative improvement respectively over MTL-
DBLSTM based approach.  V/UV error drops from 4.3% 
with conventional one-task style to 4.2% with multi-task 
style. The BAP trajectories generation by SOL-DBLSTM 
based system is on par with that by other systems. 
Table� 2: Objective evaluation results of different features 
generated by aforementioned systems.  

4.4�Subjective�evaluation�

Mean opinion score (MOS) is used to evaluate the perceived 
naturalness and quality of synthesized speech.  25 utterances 
from the test set are selected as the testing material.  For each 
utterance, 4 synthetic speeches are generated from the 
aforementioned approaches and randomly shuffled to avoid 
preferential bias; the original natural speech is also available1.  
10 native Chinese listeners with no reported listening 
difficulties are invited to score the synthetic speeches at 5-
point scale in naturalness and speech quality by comparing 
                                                           
1Samples are accessible at 
http://mjrc.sz.tsinghua.edu.cn/demo/tts/icassp2017/ 

the synthetic speeches with the natural one, in which the 
grades are standardized as 5 = Excellent (same as the natural 
speech), 4 = Good, 3 = Fair, 2 = Poor, 1 = Bad. 

As illustrated in Figure 3, all the DBLSTM based systems 
outperform the baseline DNN based system.  However, the 
MTL-DBLSTM based system is on par with the conventional 
DBLSTM based system for naturalness and quality.  
Compared with MTL-DBLSTM based system, the proposed 
SOL-DBLSTM based system gains relative improvements 
for naturalness and quality at 2.3% and 7.5% respectively. 

� 
Figure�3:  Results of MOS test for speech naturalness and 
quality Excellent  

 
5.�CONCLUSIONS�

�
In the paper, we have proposed to use multi-task learned 
structured output layer in conventional DBLSTM where 
spectral parameter targets are conditioned upon pitch 
parameters prediction to improve the performance of TTS 
synthesis system.  Experiments results show the proposed 
approach outperforms DNN based, DBLSTM based and 
MTL-DBLSTM based approaches on pitch prediction and 
spectrum prediction.  Objective results illustrate using SOL 
is helpful in improving the trajectories generation and 
subjective results show the improvements in naturalness and 
speech quality.  

This work indicates the possibility to use different but 
related tasks in training a better acoustic model for TTS with 
the SOL framework.  In the future, more related tasks could 
be investigated in the framework for generating more 
animated speeches carrying different characteristics such as 
emphasis, interactive styles, etc. 

 
6.�ACKNOWLEDGEMENTS�

 
This work is supported by National Natural Science 
Foundation of China - Research Grant Council of Hong Kong 
(NSFC-RGC) joint fund (61531166002, N_CUHK404/15), 
National High Technology Research and Development 
Program of China (2015AA016305), National Social Science 
Foundation of China (13&ZD189) and NSFC (61375027, 
61433018). 

Systems MFCC 
MCD(dB) 

BAP 
MCD(dB) 

F0 
RMSE(Hz)

V/UV 
error(%) 

DNN 5.9237 3.3689 13.6753 4.352 
DBLSTM 5.3586 3.2665 13.8390 4.378 

MTL-DBLSTM 5.3544 3.2590 13.0472 4.234 
SOL-DBLSTM 5.2886 3.2517 12.6236 4.211 
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