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ABSTRACT

In statistical parametric speech synthesis (SPSS), a few studies
have investigated the Lombard effect, specifically by using hidden
Markov model (HMM) -based systems. Recently, artificial neural
networks have demonstrated promising results in SPSS, specifi-
cally by using long short-term memory recurrent neural networks
(LSTMs). The Lombard effect, however, has not been studied in
the LSTM-based speech synthesis systems. In this study, we pro-
pose three methods for Lombard speech adaptation in LSTM-based
speech synthesis. In particular, (1) we augment Lombard specific
information with the linguistic features as input, (2) scale the hidden
activations using the learning hidden unit contributions (LHUC)
method, and (3) fine-tune the LSTMs trained on normal speech
with a small Lombard speech data. To investigate the effectiveness
of the proposed methods, we carry out experiments using small
(10 utterances) and large (500 utterances) Lombard speech data.
Experimental results confirm the adaptability of the LSTMs, and
similarity tests show that the LSTMs can achieve significantly better
adaptation performance than the HMMs in both small and large data
conditions.

Index Terms— Lombard speech synthesis, adaptation, LSTM-
TTS

1. INTRODUCTION

For seamless communication, humans involuntarily modify their
voice based on the acoustic and auditory environment. The Lom-
bard effect is a speaking style that humans typically take advantage
of when talking in noisy surroundings. Speech produced in such
conditions is called as Lombard speech or speech-in-noise. Com-
pared to speech produced in quiet environment, Lombard speech
shows increase in loudness (and intensity) and pitch, modification
in spectral tilt, duration and prosody [1]. From now on, speech
produced in quiet environment is referred to as normal speech in the
current paper.

Despite vast progress in current text-to-speech (TTS) systems,
the intelligibility of synthetic speech is typically below that of nat-
ural speech in noisy conditions [2]. Therefore, there is a great need
for technologies to improve the intelligibility of synthetic speech,
particularly by trying to incorporate the Lombard effect in a similar
manner as natural talkers do in noisy environments. In this work,
we study synthesis of Lombard speech by particularly focusing on
various adaptation approaches to be used in artificial neural network
-based speech synthesis.

2. RELATION TO PRIOR WORK

Intelligibility enhancement of synthetic speech in noise has been
studied in a number of previous studies. Some of these studies have

applied signal processing techniques on synthetic speech to mimic
the acoustic changes observed in production of Lombard speech.
The methods utilized are, for example, cepstral modification using
the Glimpse proportion measure [3], as well as spectral shaping and
dynamic range compression [4, 5]. These techniques do not require
Lombard speech to modify the synthetic speech. However, only a
few studies have explicitly used Lombard speech to enhance the in-
telligibility of synthetic speech by employing either voice conver-
sion [6], or adaptation techniques [7, 8, 9]. These previous adapta-
tion studies, however, are all based on statistical parametric speech
synthesis (SPSS) systems utilizing hidden Markov model (HMM)-
based speech synthesis, due to its adaptation abilities and flexibil-
ity in changing voice characteristics (e.g speaker, speaking style,
and emotion state), and small memory footprint [10]. The HMMs
trained on normal speech are adapted by a small amount of Lom-
bard speech with the constrained structural maximum a posteriori
linear regression combined with maximum a posteriori (CSMAPLR
+ MAP) adaptation technique [11]. These previous studies show
that the intelligibility of synthetic speech generated by the Lom-
bard adapted TTS system is significantly higher in noise environ-
ments than the corresponding synthetic speech generated from nor-
mal speech [2, 7, 12].

However, the naturalness of synthetic speech rendered through
HMM-based synthesis system is not as good as that of the best
samples from unit-selection speech synthesizers. This is mainly
caused by three factors: 1) quality of vocoder, 2) accuracy of acous-
tic model, and 3) effect of over-smoothing. To address the issue No.
2), the use of deep neural networks (DNNs) has been proposed after
their success in speech recognition. Study [13] has demonstrated
that the quality of synthetic speech generated by DNNs is signifi-
cantly better than that of HMM-based systems. One reason for the
success of DNNs compared to HMMs is that they can provide a
better and more efficient representation of complex dependencies
between linguistic and acoustic features. To model the sequen-
tial nature of speech, the DNNs are extended to recurrent neural
networks especially long short-term memory networks (LSTMs),
which capture the correlations among consecutive frames [14, 15].

A few studies have explored DNNs for speaker adaptation in
TTS [16, 17], despite the fact that DNNs have shown promising re-
sults in speaker adaptation in the area of speech recognition [18, 19].
In DNNs, the adaptation techniques have been applied at three dif-
ferent levels: at input level [16, 17, 19], at model level [16, 18], and
at output level [16, 17]. The DNN-based speaker adapted systems
outperformed the HMM-based systems in terms of naturalness and
speaker similarity [16]. However, to the best of our knowledge, there
are no previous studies on speaking style adaptation in DNN-based
TTS.

In this work, we investigate the adaptation of LSTMs to a spe-
cific speaking style, Lombard speech. We study three LSTM adap-
tation methods. The first one relies on style specific information at
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Fig. 1. Block diagram of the LSTM-based speech synthesis system
using the GlottDNN vocoder.

the input level, the second method depends on learning Lombard-
dependent amplitudes of the hidden unit contributions (LHUC). The
third approach directly updates the parameters of the normal speech
LSTM-TTS through fine-tuning.

3. LSTM-BASED SPEECH SYNTHESIS SYSTEM

Figure 1 illustrates the block diagram of our LSTM-based speech
synthesis system. In this study, we employed our new vocoder, de-
noted as GlottDNN [20], to model both normal and Lombard speech.
The GlottDNN vocoder is built on the principles of its predeces-
sor, GlottHMM [21], but the new vocoder introduces three main
improvements: GlottDNN (1) takes advantage of a new more ac-
curate glottal inverse filtering method, quasi-closed phase analysis
(QCP) [22], (2) uses a new method of deep neural network (DNN)
-based glottal excitation generation [23], and (3) proposes a new ap-
proach of band-wise processing of full-band speech. Studies [20]
and [23] clearly showed that the new vocoder performs better than
GlottHMM and the widely-used STRAIGHT vocoder.

In the training, we extract parameters from speech using the
QCP inverse filtering method, which decomposes the speech signal
into the vocal tract filter and voice source signal. This enables the
further parametrisation of the voice source and the segmentation of
the glottal flow waveforms. Table 1 describes the acoustic param-
eters extracted from both normal and Lombard speech. The vocal
tract and the glottal flow pulses are modeled separately as 1) Acous-
tic (AC) model, and 2) glottal (GL) model.

The AC model is trained with a LSTM which takes textual fea-
tures as input and predicts acoustic parameters as output. The GL
model is trained with a simple DNN, which takes acoustic parame-
ters as input and predicts the two-pitch period glottal waveform as
output. The reason we use the DNN instead of LSTM for the GL
model is that unvoiced sounds do not have glottal pulse excitation,
thus it is hard to capture sequential information. The acoustic param-
eters of normal speech are used for training an LSTM-based voice,
after which it can be adapted to Lombard speech.

In synthesis, acoustic parameters are first predicted from the
AC model using textual features and later the predicted acoustic pa-
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Fig. 2. Illustration of the mean of the windowed two-period glottal
flow derivative waveforms for normal and Lombard speech of a male
speaker.
rameters are employed to predict the time-domain glottal waveform
from the GL model. The excitation signal is generated separately
for voiced and unvoiced frames. The excitation signal is further pro-
cessed by the predicted acoustic parameters and combined into a sin-
gle excitation signal [23]. The vocal tract LSFs are also processed
to reduce over-smoothing caused by LSTM modelling. Finally, the
LSFs are converted back to linear prediction (LP) coefficients and
the obtained filter is finally used to filter the combined excitation
signal.

4. ADAPTATION TO LOMBARD SPEECH

We outline three methods using: (a) auxiliary features, (b) learning
hidden unit contributions (LHUC) and (c) fine-tuning to explicitly
adapt the normal speech AC model to Lombard speech and also out-
line the GL model for Lombard speech.

4.1. Auxiliary features

The use of augmented or auxiliary features is an approach in speaker-
adaptive training in which the linguistic features are augmented with
additional speaker-specific features computed for each speaker at
both training and test stages. Studies in [16, 17, 19] have success-
fully used the auxiliary information such as gender, speaker identity,
age or i-vector for speaker adaptation in DNN-based speech recog-
nition and synthesis. In this work, we augment the speaking style
specific information as auxiliary features to linguistic features at in-
put level. We use two binary values for normal and Lombard speech
in one-hot representation. The augmented values enable distinguish-
ing the same linguistic content spoken in the normal speaking style
from that produced using Lombard speech.

4.2. Learning hidden unit contributions (LHUC)

The LHUC method has been proposed in DNN-based speech recog-
nition [24] for unsupervised speaker adaptation and it was later ap-
plied in speech synthesis also for speaker adaptation [16]. In princi-
ple this method can be used in any acoustic model adaptation [24],
which is the reason why we employed it in the current study for Lom-
bard speech adaptation. It has several advantages including lower
number of parameters and robustness against overfitting. For the im-
plementation, we followed in detail the procedure described in [24].

4.3. Fine-tuning

In this method, the parameters of a LSTM trained on normal speech
are fine-tuned by Lombard speech. We fine-tune all the layers of
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the LSTM network, the acoustic differences between normal and
Lombard speech can act as regularization thereby preventing over-
fitting. The parameters are fine-tuned by the standard back propa-
gation through time algorithm. This fine-tuning is motivated by the
assumption that the LSTM trained on normal speech contain generic
features, which are more robust against data variation and therefore
useful in Lombard speech adaptation [25].

4.4. Lombard glottal (GL) model

The Lombard effect is known to manifest itself in the excitation
of voiced speech, the glottal flow. In the production of Lombard
speech, natural talkers tend to decrease both the glottal pulse length
(thereby increasing the fundamental frequency, F0) as well as its
spectral tilt [26]. Figure 2 shows examples of the mean glottal flow
derivative waveforms for both normal and Lombard speech. It can
be clearly seen that the glottal flow derivative of Lombard speech is
more skewed than the corresponding wave in normal speech hence
suggesting that the Lombard sound has been produced using a larger
vocal effort.

Given the essential role of the glottal pulse in the production
of natural Lombard speech, the current study uses a simple DNN to
model the GL model which maps acoustic parameters to correspond-
ing glottal pulses in Lombard speech. The use of DNN-generated
glottal pulses is also justified by our recent study indicating that
the approach gives a significant quality improvement in synthesis of
high-pitched speech compared to a baseline system based on using a
single mean pulse [23].

5. EXPERIMENTS

5.1. Speech material

We employed the Hurricane challenge corpus [27] for our experi-
ments. It contains both normal and Lombard speech data recorded
by a male native British English professional voice talent. The Lom-
bard speech data consists of 720 Harvard utterances and the normal
speech data consists of 2542 utterances recorded in a hemi-anechoic
chamber. To elicit the Lombard effect, a temporally-modulated
speech-shaped noise masker was played over headphones at a cali-
brated level of 84 dB(A).

5.2. TTS systems

In training the normal speech TTS, the data were divided into 2490,
20, and 32 utterances as training set, development set and evaluation
set, respectively. In Lombard speech adaptation, we considered two
adaptation conditions: 500 utterances and 10 utterances. In both
conditions, 20 utterances were used as a development set and 180
utterances were used as an evaluation set.

The sampling rate of the corpus was 16 kHz. The GlottDNN
vocoder was used to extract both vocal tract and voice source pa-
rameters according to Table 1. The full contextual labels were gen-
erated from the text files, which were available along with speech,
using the Festival toolkit. Since the study focuses on adapting the
spectral properties of a glottal-vocoded LSTM-based TTS system,
the state-level durations of the entire speech data were obtained by
forced alignment based on HMMs.

We trained context-dependent hidden Semi-Markov models
(HSMMs) as the baseline. The HSMMs have 5 states and each
consisted of four streams: (1) the vocal tract spectrum LSFs com-
bined with energy, (2) the voice source spectrum LSFs, (3) the

Feature Type/Unit Dimension
Vocal tract spectrum LSF 30

Energy dB 1
Fundamental frequency logf0 1
Harmonic-to-noise ratio dB/ERB 5
Voice source spectrum LSF 10

Table 1. Acoustic features used in training the LSTM-based AC
model and the DNN-based GL model.
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Fig. 3. An example of a glottal flow derivative pulse generated by
the GL model on the Lombard speaking style.

harmonic-to-noise (HNR), and (4) the fundamental frequency in log
scale, logF0. A total of 141 acoustic parameters including delta,
delta-delta features were employed in the training. To develop the
Lombard voice models, we first trained the voice models of the
normal speaking style and later the decision trees of these voice
models were adapted with the constrained maximum likelihood
linear regression (CMLLR) algorithm. The global variance (GV)
of the original training data was taken into account in the speech
parameters generation.

The AC model using LSTMs was trained as described in [28].
The full-context labels were converted into binary and numerical
features using the question file employed in the decision tree clus-
tering in the HMM-based speech synthesis system. These features
comprised information such as the phoneme identity, syllable loca-
tion, part-of-speech, number of words in an utterance, and number
of phrases in an utterance. Extra 9 numerical values were appended
providing information about the position of frame within the HMM
state and phoneme, the state position within the phoneme, and state
and phoneme durations. In total, the input feature vector was 335
in dimension. The output parameters were the same as the acoustic
parameters in the baseline system. The F0 was linearly interpolated
and an extra V/UV feature was added to acquire the voice/unvoiced
information at runtime synthesis. Thus, in total, the output fea-
ture was 142 dimensional. The input features were normalized to
the range of [0.1, 0.99] by using the min-max method. The out-
put features were normalized using the mean-variance normaliza-
tion method. The development and evaluation set were normalized
by the values derived from the training data. Similar normalization
was applied to the adaptation data. To generate smooth parameter
trajectories, the maximum likelihood parameter generation (MLPG)
algorithm was applied on predicted acoustic parameters using the
global variances.

The LSTM architecture used in the current study consisted of
3 hidden layers which were followed by a linear layer at the out-
put. The 3 hidden layers consisted of 2 feed-forward network layers
at bottom and 1 simplified LSTM layer on top. The bottom feed-
forward layers were intended to act as feature extraction layers, with
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Adaptation 10 utterances adaptation 500 utterances adaptation
method LSF LSFsource HNR (dB) F0 (Hz) LSF LSFsource HNR (dB) F0 (Hz)
Auxiliary 0.278 0.139 12.099 43.636 0.190 0.116 8.621 16.711
LHUC 0.237 0.133 10.638 25.729 0.215 0.124 9.437 18.518
Fine-tuning 0.223 0.129 9.882 24.437 0.184 0.112 8.359 15.868

Table 2. Objective results of LSTM adaptation methods. The mean square error (MSE) was calculated for all acoustic features on the
evaluation data set in both the 10 and 500 utterances adaptation conditions. LSFsource denotes the LSFs of voice source spectrum.

512 hidden units using tangent activation function in each layer. The
top layer had 256 LSTM blocks. The learning rate was tuned on
the development set. The implementation was done with the Merlin
toolkit [29].

The Lombard GL model using DNNs was developed as de-
scribed in [23]. The input features were the same as described in
Table 1 (i.e. 47 in dimension) and the output features were 500 time-
domain samples of the duration normalized glottal flow waveform.
The DNN architecture consisted of three feed-forward multilayer
nets with 100, 200, and 300 units. The sigmoid and linear activations
were used for hidden and output layers, respectively. An example of
a glottal flow derivative pulse generated with the GL model for the
Lombard speaking style is shown in Figure 3. It can be observed that
the predicted glottal waveform is very close to the original glottal
waveform estimated from Lombard speech.

5.3. Objective evaluation

An objective evaluation was conducted to analyze the performance
of each adaptation approach in the 10 utterances and 500 utterances
adaptation conditions. The mean square error (MSE) was computed
between predicted and original acoustic parameters of the entire
evaluation set. Results are presented in Table 2. As expected, the
MSE values using 10 utterances were higher than those obtained
using 500 utterances. The fine-tuning method approach achieved the
lowest MSE, among the three proposed adaptation methods, across
all acoustic parameters. The auxiliary features method performed
second best in the 500 utterances condition, but in the 10 utter-
ance condition it performed worst. The LHUC method performed
worst in the 500 utterances condition whereas in the 10 utterances
condition it performed second best.

Results indicate that in the large data condition the LSTMs were
able to discriminate better between normal and Lombard speech us-
ing auxiliary features. The change in the objective scores between
the large and small data conditions was less for the LHUC compared
to the other two methods. This indicates that the LHUC method is
more robust to changes in data sizes. The fine-tuning method per-
formed best most likely because the same speaker data were em-
ployed in both normal speech TTS training and Lombard speech
adaption. We conducted an informal listening test on the three meth-
ods and selected the fine-tuning method to be used in formal sub-
jective evaluations to compare the LSTM-based adaptation with a
HMM-based system.

5.4. Subjective evaluation

In order to compare the performance of the HMM- and LSTM-based
adaptation systems, a subjective evaluation was carried out using a
similarity listening test. In this test, each subject first listened to the
natural Lombard speech as a reference, and then listened to two sam-
ples generated by either the LSTM-based or the HMM-based system.
The listener was asked to rate on a scale from 0 to 100 how close the
synthetic sound is to the reference sample (0: sounds totally different
from reference, 100: sounds exactly like reference). The reference

and the synthetic samples had the same linguistic content and dura-
tions to make the listener focus only on the effects of acoustic feature
adaptation. The listeners were able to listen to each sample as many
times as they wished and the order of the test cases was randomized
separately for each listener.

The listening test was conducted via a web-based interface im-
plemented with the modified Beaqlejs application [30]. 19 synthe-
sized sentences were selected from both adaptation systems. A total
of 15 subjects (11 native English speakers and 4 international stu-
dents at Aalto University) participated in the listening test. All sub-
jects were included in the final analysis of the results.

The results of the subjective evaluation are presented in Figure
4. The left panel shows the results using 10 utterances as adaptation
data and the right panel shows the results using 500 utterances as
adaptation data. It is observed that in both adaptation conditions, the
LSTM-based method achieves clearly better performance than the
HMM-based baseline in terms of Lombard similarity. This confirms
the adaptability of LSTMs, and shows the effectiveness of the fine-
tuning based adaptation method.
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Fig. 4. Box plot of similarity test results between HMM and LSTM-
based adapted systems. (a) Adaptation using 10 utterances. (b)
Adaptation using 500 utterances.

6. CONCLUSIONS

In this study, a systematic experimental analysis was conducted on
Lombard speech synthesis using long short-term memory recurrent
neural networks (LSTMs). The experiments were conducted using
10 utterances (small) and 500 utterances (large) of Lombard speech
data for adaptation. The subjective evaluation confirmed that the
LSTMs are able to adapt better to the Lombard style than HMMs.
We also found that the simple fine-tuning method was the best adap-
tation technique in the case when both normal and Lombard speech
was spoken by the same speaker. In the future, we will study how the
proposed LSTM-based adaptation method works for other speaking
styles including breathy and shouted speech.

The samples and listening test results used in the experiments
are available online via this link: http://bit.ly/2c01a8O
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