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ABSTRACT

In this paper, we target improving the accuracy of acoustic modelling
for statistical parametric speech synthesis (SPSS) and introduce the
convolutional neural network (CNN) due to its powerful capacity in
locality modelling. A novel model architecture combining unidirec-
tional long short-term memory (LSTM) and a time-domain convo-
lutional output layer (COL) is proposed and employed to acoustic
modelling. The two components complement each other and result
in a high-performance synthesis system. Specifically, the unidirec-
tional LSTM can learn expressive feature representations from his-
tory context and the COL ingeniously absorbs some of these repre-
sentations within a look-ahead window to advance predictions. This
complementary mechanism significantly improve the predictive ac-
curacy and the quality of synthetic speech. In addition, the unique
operation mechanism of convolution makes COL a fine parameter
trajectory smoother between consecutive frames. Subjective prefer-
ence tests show that the proposed architecture can synthesize natural
sounding speech without dynamic features.

Index Terms— Statistical parametric speech synthesis, LSTM,
convolutional output layer, high-performance, trajectory smoother

1. INTRODUCTION

Recently the deep neural networks (DNNs) have greatly advanced
the perceived naturalness of synthetic speech in statistical paramet-
ric speech synthesis (SPSS) [1, 2, 3, 4, 5, 6]. Further improvements
were reported by using more advanced training criteria [7, 8, 9, 10,
11, 12] and more powerful models such as long short-term mem-
ory (LSTM) [13, 14] and gated recurrent unit (GRU) [15] recurrent
neural networks (RNNs) [8, 16, 17, 18]. However, the acoustic mod-
elling accuracy still remains a key factor [19] that limits the quality
of synthetic speech.

In this paper, we explore more advanced acoustic modelling
techniques for SPSS. Convolutional neural networks (CNNs) are an
alternative type of neural network that can be used to model local-
ly spatial and temporal correlation in sequential structure through
weight sharing across local regions of input space. They have been
explored extensively in the image recognition [20] and speech recog-
nition [21, 22] fields, offering improvements over DNNs on many
tasks. Motivated by the success, this paper investigates the applica-
tion of CNNs to acoustic modelling in SPSS. Specifically, a novel
model architecture (see Fig.1) using unidirectional LSTM-RNNs as
its base and a simplified time-domain convolutional network as its
output layer, is proposed and employed to acoustic modelling. Intu-
itively, the unidirectional LSTM (ULSTM) can learn expressive rep-
resentations from history context and the convolutional output layer

(COL) just ingeniously utilizes some of the representations with-
in a look-ahead window to make a better prediction at each gener-
ation step. Experimental results both subjectively and objectively
show that our proposed model can achieve high-performance SPSS.
Specifically, the advantages of combination of ULSTM and COL
(referred to as ULSTM-COL) are threefold. First, it can significant-
ly improve the predictive accuracy of acoustic features over both
ULSTM and latency-controlled bidirectional LSTM (LC-BLSTM)
[23] models, and best perceived naturalness is also achieved. Sec-
ond, the unique operation mechanism of the convolutional output
layer makes itself serve as a fine parameter trajectory smoother be-
tween consecutive frames of acoustic parameters; hence, the dynam-
ic feature constraints and maximum likelihood parameter generation
(MLPG) algorithm [24] used to produce smooth trajectories are not
required any more. Third, the unidirectional nature with negligible
latency of the proposed architecture allows low-latency synthesis in
real-time application.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the ULSTM-COL architecture
for acoustic modeling in SPSS. Experimental results and analysis are
presented in Section 4, and Section 5 gives the conclusions.

2. RELATED WORK

The most popular way to apply neural networks to SPSS is use a
feedforward neural network (FNN) or recurrent neural network (RN-
N) as a deep regression model to map linguistic features directly
to acoustic features (e.g. LSP). However, a limitation of these two
kinds of architectures is that the mapping performed is in essence
still a one-to-one problem, though the RNN internally considers the
dependencies on history or future context when propagating infor-
mation. Strictly speaking, only the output of last or next timestep
is explicitly used. Thus a potential problem is that the outputting
representations of DNN/RNN in a range of successive timesteps are
underused when performing a prediction at each timestep. However,
the convolutional operation in our proposed ULSTM-COL architec-
ture has the capacity to absorb multiple high-level representations
each time to make a better prediction through introducing a slight
but negligible delay. So the ULSTM-COL model actually performs
a many-to-one mapping as opposed to DNN/RNN.

Dynamic features (deltas, delta-deltas) are usually used to s-
mooth parameter trajectories during generation. But in a typical
conventional implementation of neural networks-based SPSS, the
relationships between static and dynamic features are ignored dur-
ing training. New training criteria such as minimum trajectory er-
ror [9] and minimum sequence error [10] are proposed to explicitly
take into account dynamic constraints in the training phase. Anoth-
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Fig. 1. Schematic diagram of the proposed ULSTM-COL architec-
ture for SPSS.

er existing problem is the high-latency that MLPG algorithm brings
(case 1 in [24]) during generation. Some solutions to addressing the
high-latency are listed in [16]. But the most direct way to bypass
these troubles is to remove the dynamic features during modelling.
Zen et al. [16] proposed a recurrent output layer (ROL) based on
unidirectional LSTM to achieve smooth transitions between consec-
utive frames and accordingly the MLPG is replaced. But it is still
faced with the limitation that not such enough local information is
utilized that inadequate smooth may exist when performing a pre-
diction. However, the unique operation mechanism of COL makes
itself a fine trajectory smoother without suffering from the above
problem. In addition, the ULSTM-COL architecture with a negligi-
ble delay maintains the unidirectional property, thus allowing low-
latency synthesis as ROL does in [16].

3. MODEL ARCHITECTURE

This section describes the ULSTM-COL architecture, illustrated in
Fig. 1, for acoustic modelling in SPSS.

3.1. Long Short-Term Memory with Projection

The LSTM was initially proposed in [13] to solve the gradient van-
ishing problem in RNNs. Several minor modifications to the original
LSTM unit has been made. In this paper, we adopt the implemen-
tation version as used in [14], where a recurrent projection layer is
appended after the LSTM cells. The iterating equations are as fol-
lows:

it = sigm(W ixxt +W irrt−1 +W ic � ct−1 + bi) (1)

f t = sigm(W fxxt +W frrt−1 +W fc � ct−1 + bf ) (2)

ct = f t � ct−1 + it � g(W cxxt +W crrt−1 + bc) (3)

ot = f t�ct−1+sigm(W oxxt+W orrt−1+W oc�ct+bo) (4)

mt = ot � h(ct) (5)

rt = W rmmt (6)

where the W terms denote weight matrices, the b terms denote bias
vectors, i, f and o are vectors of the input gate, forget gate and

output gate respectively, and c, m are cell activations and cell output
vectors, r is the output vector via projecting m, as formulated by
Eq. 6. Basically the projection can reduce the output dimension,
resulting in fewer parameters than the standard LSTM.

The LSTM in the ULSTM-COL works as a base to capture long-
term dependencies across the linguistic input and to offer better rep-
resentations for subsequent use as input to the convolution output
layer.

3.2. Convolutional Output Layer

Since CNN has powerful capabilities to model locally spatial and
temporal correlation in sequential structure through weight sharing
across local regions of input space, a simplified time-domain convo-
lutional output layer is designed to complement the ULSTM. Specif-
ically, the COL focuses on only a small portion of the future informa-
tion and absorb it to perform current prediction, as shown in Fig. 1.
Suppose at timestep t, we consider a look-ahead window with width
of N . We now have a feature representation matrix at:t+N of size
(N + 1) × d, where d is the dimension of acoustic features. Then
a convolutional template W of the same size as at:t+N is defined.
The output vector ct of the COL at timestep t is:

ct =

N∑
i=0

wi � at+i (7)

where wi corresponds to the i-th row of the convolutional template
W and � denotes element-wise multiplication.

Note that our intention is to improve the acoustic modelling ac-
curacy in a low-latency setting on the basis of ULSTM, so the con-
volutional template targets a certain amount of context information
within a look-ahead window. As a result, the straightforward way
to gather information makes ULSTM-COL perform even better than
a latency-controlled bidirectional LSTM, which will be described in
next subsection. The convolutional template can also be interpreted
as a sequential memory block, which reads, at a time, a small frag-
ment of the input sequence and writes a record (frame). We place
the convolutional template at the output layer because experiments
demonstrate it can serve as a fine parameter trajectory smoother.
Thus dynamic features can be removed during modelling.

3.3. Latency-controlled Bidirectional LSTM

The latency-controlled bidirectional LSTM (LC-BLSTM) was pro-
posed in [23] to lower the latency existing in a standard BLSTM in
speech recognition. In LC-BLSTM, the forward sub-layer exploit-
s the past history in the same way as ULSTM does. However, for
the backward sub-layer, the LC-BLSTM only looks ahead a fixed
number of frames instead of seeing the whole utterance during gen-
eration. Therefore, the LC-BLSTM can be much more efficiently
trained in a mini-batch fashion without performance loss. This pa-
per employs the LC-BLSTM as a benchmark to be compared with
our proposed ULSTM-COL model.

3.4. Low-latency Synthesis using ULSTM-COL

The low-latency synthesis using ULSTM-COL can be outlined as
follows. First, a text to be synthesized is converted into a sequence
of phoneme-level linguistic features through text analysis. Next, the
frame-level features of each phoneme are predicted using the dura-
tion model. Then the phoneme-level and frame-level features are
spliced together as inputs to the well-trained ULSTM-COL. A fixed
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number of input features are delayed at start when outputting the
first frame. Then the propagation and waveform synthesis can be
performed sequentially in a streaming manner. Note that the first
step (text analysis) is processed in a sentence-level, whereas the re-
maining steps are streaming processing, as text analysis is usually
significantly faster than the remaining ones. Here, the low-latency
synthesis runs similar to that in [16] apart from a few frames of de-
lay.

4. EXPERIMENTS

4.1. Experimental Setups

A Chinese Mandarin speech database recorded by a female profes-
sional speaker, both phonetically and prosodically rich, was used in
our experiments. The database consisted of 7266 training utterances
(around 7 hours, divided into three subsets: training, developmen-
t and testing, with 6550, 686 and 30 utterances respectively). The
speech data was downsampled from 44.1 kHz to 16 kHz, then 40-
order line spectral pairs (LSPs) plus a gain, 25 band aperiodicities
(BAPs) and logarithmic fundamental frequency (log F0) were ex-
tracted every 5-ms using STRAIGHT [25].

For the training of neural networks, the speech data and its as-
sociated transcriptions were time-aligned using an HMM aligner,
which was first trained using maximum likelihood criterion and then
refined by minimum generation error (MGE) training to minimize
the generation error between predicted and original parameter tra-
jectories of the training data. The phoneme-level feature vector con-
tained 462 binary features for categorical linguistic contexts (e.g.
phonemes identities) and 64 numeric features for numerical linguis-
tic contexts (e.g. the number of phonemes in the current word).
Then five binary features for state index and a numeric feature for
the position of a frame in the current state were appended to the
phoneme-level feature vectors to form frame-level linguistic fea-
tures. The acoustic feature consisted of 41 LSPs, 25 BAPs and an
interpolated log F0, and optionally their dynamic counterparts. A
voiced/unvoiced flag was also added to the output vector to indicate
the voicing condition of the current frame. Both the input and output
features were normalized to the range of [0.01, 0.99].

For comparison, three types of systems, which were ULSTM,
LC-BLSTM and ULSTM-COL respectively, were established. The
ULSTM served as a baseline to evaluate the other two models. All
the architectures had two hidden layers. For the ULSTM architec-
ture, each layer contained 800 memory blocks with 512 recurrent
projection units, while the LC-BLSTM used an asymmetric architec-
ture. Specifically, the forward sub-layer had 600 memory block with
384 recurrent projection units; and the backward sub-layer had 200
memory blocks with 128 recurrent projection units. The fixed num-
ber for latency control is set to 10. The window width N of convolu-
tional template in COL is set to 51 unless otherwise explicitly stated
in the experiments. The parameters of all the models were first pre-
trained using layerwise backpropagation, and then optimized with a
mini-batch stochastic gradient descent (SGD)-based algorithm with
an initial learning rate of 0.004, and momentum of 0.5. For software
implementation, the Kaldi toolkit [26] was used and training was
conducted on a Tesla K80 GPU. Training ULSTM, LC-BLSTM and
ULSTM-COL took about respectively 50 minutes, 85 minutes and
65 minutes every epoch.

At synthesis time, if the acoustic features contained dynamic
features, the speech parameter generation algorithm (case 1 in [24])

1This setup will be explained in the following experiments.
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Fig. 2. Iteration curves of different systems on training set and de-
velopment set.

was used to generate smooth acoustic trajectories. LSP based for-
mant enhancement [27] was used to improve the quality of synthe-
sized speech.

We evaluated the performance of the systems both objectively
and subjectively. 30 utterances were tested. To objectively evalu-
ate the synthetic quality, log spectral distance (LSD), BAPs error,
voiced/unvoiced error rate and root mean squared error (RMSE) of
log F0 were measured. The subjective evaluation was an AB prefer-
ence test. 15 native listeners with no hearing difficulties participated
in the evaluation using headphones. Each subject evaluated 20 pairs
of synthesized utterances and each pair was evaluated by 10 subjects
at most. After listening to each pair of synthesized utterances, the
subjects were asked to choose their preferred one; they could choose
“neutral” if they had no preference.

4.2. Experimental Results and Analysis

The three systems were modeled with and without dynamic features
respectively, whereas they used the same linguistic features through-
out the experiments. We demonstrated the ULSTM-COL performed
quite well under both these two situations.

4.2.1. With dynamic features

Table 1. Preference scores (%) between different systems modeled
with dynamic features. The confidence level of t-test is 0.95.

ULSTM LC-BLSTM ULSTM-COL Neutral p-value

17.0 – 72.3 10.7 < 10−6

– 20.0 65.0 15.0 < 10−6

27.3 45.0 – 27.7 < 10−5

Fig. 2 shows the iteration curves on training set and development
set during model training. It can be clearly seen that the ULSTM-
COL system converges faster than both ULSTM and LC-BLSTM,
and it achieves significantly the minimum mean square error (MSE)
on development set.2 We conjecture that the ULSTM layers have
learned good feature representations from history context, so the

2This also leads to the best objective measurements among all the system-
s, which is not listed here due to limited space.
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COL simply absorbs the appropriate local information within a look-
ahead window to make a better prediction. This complementary
mechanism makes ULSTM-COL a more powerful architecture to
predict acoustic features. The subjective test in Table 1 also con-
firms this superiority. Significant preference to ULSTM-COL is giv-
en when comparing against the other two systems.

4.2.2. Without dynamic features

Table 2. Objective results for variable super-parameter N of the
look-ahead window.
N LSD

(dB)
BAP Error

(dB)
V/UV Error

Rate (%)
RMSE of

log F0

3 2.2836 2.4154 5.108 0.1076
5 2.2823 2.4202 5.021 0.1051
7 2.2854 2.4222 5.017 0.1069
9 2.2854 2.4272 5.281 0.1066

15 2.2868 2.4255 5.212 0.1069

Table 3. Statistics of the database. A 5-state HMM was used.
# Frames # Phonemes # States Avg. frames/state
5819252 204552 1022760 5.69

First, we investigated the effect of varying the number of frames
(super-parameter N ) within the look-ahead window in COL on ob-
jective evaluation, shown in Table 2. From the table we can see that
as N goes to 5, the LSD and RMSE of log F0 reaches the minimum
at the same time, and BAP error and V/UV error rate also gets ap-
proximately to their minimums respectively. But as N goes larger,
these objective measurements all show rising trends in general. To
account for this, simple statistical analyses of the training database
were conducted. Table 3 lists some statistics. By calculation each
HMM state lasts about 5.69 frames on average. It is interesting that
this value is very close to the best width (5 in our experiments) of
the look-ahead window. We conjecture that the convolutional opera-
tion may include redundant information or even noise when looking
ahead more than one state. This suggest a small amount of future in-
formation at one-state level is enough to help to advance prediction
for the ULSTM-COL system. Note that this very small width brings
just hundreds of parameters to COL but with great performance im-
provements. It also results in a negligible delay in a real-time syn-
thesis application.

Table 4. Preference scores(%). The confidence level of t-test is 0.95.
ULSTM-COL-d ULSTM-COL-s Neutral p-value

35.3 39.0 25.7 0.354

The unique work mechanism of convolution also makes itself
a fine parameter trajectory smoother when placed at the output lay-
er. This can be demonstrated from two aspects. First, we compared
the ULSTM-COL system modeled with and without dynamic fea-
tures (denoted as ULSTM-COL-d and ULSTM-COL-s respectively)
using subjective preference test. As can be seen from Table 4, not
statistically significant preference is showed to the either one of the
cases, indicating that whether there are dynamic features has no sig-
nificant effect on the perceived quality3. Second, Fig. 3 visualized
the trajectories of 3rd LSP coefficients and F0 contours of natural
speech and generated by ULSTM-COL-d and ULSTM-COL-s. We

3We also modeled ULSTM and LC-BLSTM with just static features, but
noticeable discontinuities can be discerned in preliminary listening tests.

can see in both cases the ULSTM-COL can generate smooth trajec-
tories and F0 contours. It’ especially clear that ULSTM-COL-s can
predict more detailed information which may be easily wiped away
by the MLPG algorithm used with dynamic features.
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Fig. 3. Trajectories of 3rd LSP coefficients and F0 contours for one
test utterance.

Since the ULSTM-COL exhibits high-performance with just
static acoustic parameters, it is applicable to a low-latency, real-time
synthesis application.

5. CONCLUSIONS

This paper investigates the application of convolutional neural
networks to acoustic modelling for SPSS. We propose a high-
performance synthesis architecture called ULSTM-COL that takes
advantages of the complementarity of unidirectional LSTM and con-
volutional output layer by combining them together. Specifically,
the unidirectional LSTM works as base to offer expressive feature
representations by capturing long-term history dependencies across
linguistic input and the COL just ingeniously absorbs some of these
representations within a look-ahead window to advance predictions.
In addition, the unique operation mechanism of COL makes itself
a fine trajectory smoother between consecutive acoustic frames.
Experimental results both subjectively and objectively demonstrated
that the ULSTM-COL trained with only static features can synthe-
size natural sounding speech. The generation process demands just
a few frames of delay and maintains the unidirectional property. All
these merits make the ULSTM-COL a high-performance synthesis
system applicable to low-latency, real-time applications.

Our future work will focus on the investigation of convolutional
neural networks as input layer for acoustic modelling.
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