
DURATION PREDICTION USING MULTIPLE GAUSSIAN PROCESS EXPERTS FOR
GPR-BASED SPEECH SYNTHESIS

Decha Moungsri1, Tomoki Koriyama2, Takao Kobayashi2

1Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
2School of Engineering, Tokyo Institute of Technology

moungsri.d.aa@m.titech.ac.jp, {koriyama,takao.kobayashi}@ip.titech.ac.jp

ABSTRACT

This paper proposes an alternative multi-level approach to duration
prediction for improving prosody generation in statistical paramet-
ric speech synthesis using multiple Gaussian process experts. We
use two duration models at different levels, specifically, syllable and
phone. First, we individually train syllable- and phone-level duration
models. Then, the predictive distributions of syllable and phone du-
ration models are combined by product of Gaussians. The means of
combined predictive distributions are used as predicted durations for
synthetic speech. We show objective and subjective evaluation re-
sults for the proposed technique by comparing with the conventional
ones when the techniques are applied to Gaussian process regression
(GPR)-based speech synthesis.

Index Terms— Multi-level model, Duration prediction, GPR-
based speech synthesis, Product of Guassians, Multiple Gaussian
process experts

1. INTRODUCTION

Gaussian process regression (GPR)-based speech synthesis [1] has
been successfully developed to overcome the limitations of hidden
Markov model (HMM)-based speech synthesis [2]. In the GPR-
based technique, frame-level acoustic features and linguistic infor-
mation are defined as output and input variables of a Gaussian pro-
cess regression, respectively. Speech parameters are generated by
means of inference from new given input variables. The main goal
of speech synthesis is to generate natural sounding and intelligible
speech. Duration is one of the most important prosodic features
which affects naturalness and meaning of synthetic speech. Single
phone duration modeling has been successfully applied to duration
prediction of given text in the GPR-based framework [3]. How-
ever, predicted durations are not perfect because a single phone-level
model is insufficient to capture prosodic features in longer units. For
example, in Thai language case, stress in the syllable layer is a cru-
cial factor that affects tone contour, syllable duration, and sentence
structure [4, 5].

To incorporate the characteristics of multiple layers into prosody
generation, various techniques have been proposed to combine mul-
tiple models of different layers. In [6], longer unit models were
integrated with a state-level model in speech parameter generation
by maximizing joint probability. Speaking rate-dependent hierar-
chical prosodic model (SP-HPM) [7] utilized a hierarchical struc-
ture including prosodic-acoustic features, linguistic information, and
prosody structure for speaking rate modeling. In [8], a product of ex-
perts framework was proposed, which jointly trains multiple acoustic
models for speech synthesis. In our previous work [9], we proposed

two-stage duration modeling which utilized a syllable-level model
for predicting syllable durations and using the result as an additional
context for a phone-level model in GPR-based duration prediction.
Although the two-stage model has shown significant improvement in
duration prediction accuracy, it is still imperfect since the syllable-
level model has not been used explicitly in generating duration for
speech synthesis.

In this paper, we propose an alternative technique for duration
prediction using multiple Gaussian process (GP) experts in the GPR-
based speech synthesis. First, we individually train phone and syl-
lable duration models. In duration prediction, we express syllable
duration by the sum of phone durations. Then, the predictive dis-
tributions of phone and syllable models are combined by product of
Gaussians. The predicted duration can be obtained by calculating
model parameters of the combined model. We show performance
evaluation results of the proposed technique by objective and sub-
jective tests.

2. GPR-BASED SPEECH SYNTHESIS

Let X = [x1,x2, ...,xN ]ᵀ, and y = [y1, y2, ..., yN ]ᵀ be the matrix
forms of frame-level contexts, and acoustic features of training data,
respectively. The frame-level1 context xi contains temporal events
xi,k as follows:

xi = (xi,1, xi,2, . . . , xi,K)

xi,k = (pi,k, ci,k)
(1)

where each temporal event xi,k is composed of linguistic informa-
tion ci,k and relative position pi,k in speech units. In GPR-based
speech synthesis, y is assumed to be sampled from a Gaussian pro-
cess that can be expressed by

y ∼ N (0,KN + σ2I) (2)

where KN is a covariance matrix of training data. Let XT and yT be
matrix forms for test data. Then, the predictive distribution of yT is
given by

p(yT |y,X,XT ) = N (yT ;µT ,ΣT ) (3)

µT = KTN [KN + σ2I]−1y (4)

ΣT = KT + σ2I − KTN [KN + σ2I]−1KNT (5)

where KT and KNT are covariance matrices of test data and between
training and test data. In the covariance matrices, the correlation be-
tween xm and xn can be obtained by the kernel function κ(xm,xn)

1For duration model, phone- or syllable-level context is used.
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as follows:

κ(xm,xn) =
K∑

k=1

θ2kκk(xm,k, xn,k) + δmnθ
2
floor (6)

where θ2k and θ2floor are kernel parameters. The function κk(·) is
defined for the k-th temporal event.

When synthesizing speech, we generate a speech parameter se-
quence using the predictive distribution [3, 10]. Since GPR is a
nonparametric model, the predictive mean is obtained directly from
acoustic features of training data y, which would result in natural
sounding speech parameter sequences.

3. DURATION PREDICTION BY MULTIPLE GP EXPERTS

Thai syllable has four components, initial consonant, vowel, final-
consonant, and tone [11]. Final consonant can be absent in some
syllables. In studies of Thai language, prosody is often described
in syllable unit where a position of stressed/unstressed syllable af-
fects perception in sentence structure [4, 12]. Stress in Thai has two
main acoustic features, F0 contour and duration, where the dura-
tion is the most dominant [5]. Furthermore, it is shown that whether
a syllable is stressed/unstressed influences the durations of vowel
and final consonant in that syllable [13]. From this viewpoint, we
propose an alternative multi-level model for duration prediction by
using syllable- and phone-level models.

In the proposed technique, we use multiple Gaussian process
experts in a similar way as [14] which maximize the likelihood
of product of multiple predictive distributions: syllable duration
p(ds

T |ds,Xs,Xs
T ) and phone duration p(dp

T |d
p,Xp,Xp

T ) where Xs

and Xp are input variables of syllable and phone duration models,
respectively. Matrix forms of syllable durations ds and phone dura-
tions dp are output variables of syllable and phone duration models,
respectively. The product of distribution is expressed as

p(dp
T |d

s, dp,X,XT ) =
1
Z
p(ds

T |ds,Xs,Xs
T )

· p(dp
T |d

p,Xp,Xp
T ) (7)

ds
T = [ds1, d

s
2, ..., d

s
n]

ᵀ (8)
dp
T = [dp1,1, d

p
1,2, d

p
2,1, ..., d

s
n,m(n)]

ᵀ (9)

where ds
T and dp

T are matrix forms of syllable and phone durations
of test data, respectively, and Z is a normalization term. Syllable
duration dsi is determined by the sum of phone durations dpi,j within
the syllable as follows:

dsi =
m(i)∑

j=1

dpi,j (10)

where m(i) is the number of phones in i-th syllable, whose value is
2 or 3. Then, the relationship between syllable duration and phone
duration can be written in a matrix form using a transformation ma-
trix W as follows:

ds
T = Wdp

T . (11)

For example, suppose that a sentence has 3 syllables and respective

syllables have 3, 2, and 3 phones. Then, the equation is expressed as

ds
T W dp

T

⎡

⎣
ds1
ds2
ds3

⎤

⎦ =

⎡

⎣
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dp1,1
dp1,2
dp1,3
dp2,1
dp2,2
dp3,1
dp3,2
dp3,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)
Since the predictive distribution of syllable duration is Gaussian, it
can be reformulated in terms of phone duration in the same way as
the formulation of trajectory HMM framework [15] as follows:

p(ds
T |ds,Xs,Xs

T ) = N (Wdp
T ;µ

s
T ,Σ

s
T ) (13)

p(dp
T |d

s,Xs,Xs
T ) = N (dp

T ;Pr,P) (14)

P = (WᵀΣs
T
−1W)−1 (15)

r = WᵀΣs
T
−1µs

T . (16)

Since both predictive distributions are Gaussian, Eq. (7) can be
rewritten by Gaussian as follows:

p(dp
T |d

s, dp,X,XT ) =
1
Z′N (dp

T ;Pr,P) · N p(dp
T ;µ

p
T ,Σ

p
T )

= N (dp
T ;µD,ΣD).

(17)
Then, the mean and covariance of the predictive distribution are
given by

µD = ΣD(r +Σp
T
−1µp

T ) (18)

Σ−1
D = P−1 +Σp

T
−1. (19)

Finally, we use the mean µD as the synthetic phone duration se-
quence.

4. EXPERIMENTS

We conducted experiments to evaluate the performance of the pro-
posed technique. In the experiments, we compared three techniques:
single model, multi-level model by two-stage prediction, and mul-
tiple Gaussian process (GP) experts model. Figure 1 summarizes
these prediction approaches. The single model is the conventional
GPR-based approach [3] that uses a single phone model for duration
prediction. The two-stage model is our previous approach that was
proposed in [9]. In the two-stage model, we used syllable duration
as an additional context for phone duration prediction. The syllable
duration context for test data can be predicted by the syllable du-
ration model. The proposed technique, multiple GP experts model,
combines phone and syllable duration models for phone duration
prediction as described in Section 3.

4.1. Experimental condition

The speech database used in the experiments was a set of phoneti-
cally balanced sentences of Thai speech database, T-Sync-1 devel-
oped by NECTEC ([16]). The sentences were uttered by one pro-
fessional female speaker with clear articulation in the reading style
of standard Thai accent. We used 450 utterances and 50 utterances
for training and evaluation, respectively. The training data contained
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Fig. 1. Comparison of prediction models.

13733 syllables. The test set for evaluation was not included in the
training data.

We used the conventional phone-level context of GPR-based
Thai speech synthesis [9] for training and prediction. The phone-
based contextual factors are summarized in Table 1. The context is
composed of linguistic information in phone, syllable, word, and ut-
terance layers including their relative position in different scale units.
The phone-level context was used for training and prediction in each
phone-level model of all techniques. For syllable duration model,
we used syllable-level context which is composed of linguistic in-
formation in syllable, word, and utterance layers. In the syllable
layer, the context includes phonetic features of phones in syllable
and tone. The syllable-based contextual factors are summarized in
Table 2. We used the kernel function described in [9] to calculate the
distance of each temporal event.

We used speech signals sampled at a rate of 16kHz. Spectral fea-
tures, aperiodicity, and F0 were extracted by STRAIGHT [17] with
5-ms frame shift. The acoustic feature vector consisted of the 0-39th
mel-cepstral coefficients, 5-band aperiodicity, log F0, and their delta
and delta-delta coefficients. In GP model training, we employed
partially independent conditional (PIC) approximation [18], and the
kernel function parameters were optimized by EM-based method
[19].

4.2. Objective evaluation results

In the objective evaluation, we measured duration distortion between
synthetic speech and the original one in phone and syllable units.
The RMS errors of phone and syllable durations are shown in Figs.
2 and 3, respectively. The two-stage model and proposed technique

Table 1. Phone-level context based on temporal events for Thai
GPR-based speech synthesis.

Unit: phone
Type: beginning of each phonetic feature
Scale: phone-normalized
Unit: syllable
Type: {beginning, end} of tone type

{beginning, end} of syllable durationa

Scale: {syllable, word}-normalized
Unit: word
Type: {beginning, end} of part of speech
Scale: {syllable, word}-normalized
Unit: utterance
Type: {beginning, end} of utterance
Scale: {syllable, word, utterance}-normalized

aThe temporal context is used only in phone-level duration model of the
two-stage approach

Table 2. Syllable-level context based on temporal events for Thai
GPR-based speech synthesis.

Unit: syllable
Type: beginning of each initial-consonant’s phonetic feature

beginning of each vowel’s phonetic feature
beginning of each final-consonant’s phonetic feature
beginning of tone type

Scale: {syllable, word}-normalized
Unit: word
Type: {beginning, end} of part of speech
Scale: {syllable, word}-normalized
Unit: utterance
Type: {beginning, end} of utterance
Scale: {syllable, word, utterance}-normalized

had smaller distortion than the single model. In phone duration dis-
tortion, the two-stage model had lower RMS error than the proposed
technique. However, the proposed technique achieved lower RMS
error than the two-stage model in syllable duration distortion.

Figure 4 shows an example of syllable duration errors in a test
sentence where each bar represents the difference between the pre-
dicted syllable duration and the original. It can be seen that the pro-
posed technique provided smaller errors than the other techniques in
almost all syllables.

4.3. Subjective evaluation results

We conducted MOS and forced choice preference tests to evaluate
the perceptual quality in the naturalness of predicted duration. Par-
ticipants were ten Thai native speakers. Each person evaluated ten
speech samples that are randomly selected from 50 test samples. In
the MOS test, the participants evaluated each sample on a five-point
scale from 1 to 5 according to their satisfaction in the naturalness
of syllable and phone duration. The definition of the rating was
1:bad, 2:poor, 3:fair, 4:good, and 5:excellent. Participants could re-
peat playback as many times as they required for evaluation. Figure
5 shows the resultant scores with 95% confidence intervals. It is
shown that the proposed technique achieved higher score than the
single model. Moreover, the two-stage model got slightly higher
score than the proposed technique, but the difference is statistically
insignificant.
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Fig. 2. Phone duration distortion

Fig. 3. Syllable duration distortion

In the forced choice preference test, the participants were asked
to choose more natural one in terms of phone and syllable durations
for each pair of speech samples. The participants could repeat play-
back as many times as they required in the same way as the MOS
test. Figure 6 shows the result of forced choice preference test. It is
seen that the participants preferred the proposed technique than the
single-level model. When comparing the proposed technique to the
two-stage model, we see that the two-stage received more preference
even if the proposed technique gave lower syllable duration distor-
tion. One reason might be that the perception of stress intensity is
highly dependent on the durations of vowel and final-consonant than
that of an entire syllable. This means that even though the duration
of initial consonant is very long, the participants may not perceive it
as stressed syllable if vowel and final-consonant durations are short.
Therefore, the accuracy of phone durations is more significant in the
perception of naturalness than syllable durations.

5. CONCLUSION

We have proposed an alternative technique of multi-level model
for GPR-based duration prediction. In the proposed technique, we
firstly train phone and syllable duration models independently. In
duration prediction, we explicitly express syllable duration as the
sum of phone durations. Then, the predictive distributions of syl-
lable and phone durations are combined by product of Gaussians.
The objective evaluation results showed that the proposed technique
gave smaller distortion than the two-stage and single model tech-
niques in syllable duration distortion. The subjective evaluation
results showed that the proposed technique is comparable with the
two-stage model. In future work, we will conduct experiments with
a larger number of syllables since Thai syllables are quite complex
and the current amount of syllable data might be insufficient.
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(a) Single model

(b) Two-stage model

(c) Proposed technique

Fig. 4. Comparison of duration prediction errors in syllable unit.
The sentence is “... the points of concern in design of antenna at
ground station is ...” in English.

Fig. 5. Result of MOS test in subjective evaluation of naturalness.

Fig. 6. Result of forced choice preference test in subjective evalua-
tion of naturalness.
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