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ABSTRACT 

 

We propose a method to improve speaker verification 

performance when a test utterance is very short. In some 

situations with short test utterances, performance of i-

vector/probabilistic linear discriminant analysis systems 

degrades. The proposed method transforms short-utterance 

feature vectors to adequate vectors using a deep neural 

network, which compensate for short utterances. To reduce 

the dimensionality of the search space, we extract several 

principal components from the residual vectors between 

every long utterance i-vector in a development set and its 

truncated short utterance i-vector. Then an input i-vector of 

the network is transformed by linear combination of these 

directions. In this case, network outputs correspond to 

weights for linear combination of principal components. We 

use public speech databases to evaluate the method. The 

experimental results on short2-10sec condition (det6, male 

portion) of the NIST 2008 speaker recognition evaluation 

corpus show that the proposed method reduces the minimum 

detection cost relative to the baseline system, which uses 

linear discriminant analysis transformed i-vectors as features. 

 

Index Terms— speaker verification, i-vector, deep 

neural network, principal components analysis 

 

1. INTRODUCTION 

 

I-vector/probabilistic linear discriminant analysis (PLDA) 

speaker verification systems [1] show good accuracy when 

training and test utterances are sufficiently long. However, in 

many real-world applications of speaker verification, the 

durations of test utterances are limited. Kanagasundaram et 

al. reported in [2] that as the duration of a test utterance 

decreases, the performance of the i-vector/PLDA system 

degrades. 

Some related studies have been conducted to avoid 

performance degradation caused by duration of utterances in 

i-vector/PLDA systems. Sarkar et al. [3] trained statistical 

parameters of an i-vector system using both short and long 

utterances to improve performance when the duration of a 

target speaker's training and testing utterances mismatch. 

Kenny et al. [4] quantified the uncertainty associated with 

the i-vector extraction process and propagated it into a 

PLDA classifier to manage duration variability properly. 

Cumani et al. [5] proposed a new PLDA model that exploits 

the uncertainty of the i-vector extraction process. In [6, 7], 

score calibration methods were introduced that use quality 

measure functions to include utterance duration in the 

calibration transformation. Vesnicer et al. [8] presented a 

duration-based weighting techniques for controlling the 

impact of a given i-vector to the overall statistics being 

computed. Kanagasundaram et al. [9] proposed a technique 

to improve speaker verification performance when only 

short utterances are available. 

In this research, we propose a method to reduce the 

performance degradation caused by short-test utterances 

using a deep learning technique that transforms original test 

feature vectors. However, training utterances are assumed to 

have sufficiently long duration. 

Recently, deep learning has garnered considerable 

attention in the wide field of machine learning. Few studies 

have been conducted that apply deep learning to speaker 

verification systems. Variani et al. [10] extracted deep-

vectors (d-vectors) (instead of i-vectors) as feature vectors 

for text-dependent speaker verification using a deep neural 

network (DNN) trained to identify speakers in a 

development set. Lei et al. [11] introduced a novel 

framework of deep learning for speaker verification systems 

that uses a DNN phone-state recognizer to compute statistics 

during the i-vector extraction step. Especially, Yamamoto et 

al. described denoising autoencoder (DAE) based speaker 

feature restoration for utterances of short duration [12], 

which is the most similar to our research. Their method 

showed improved speaker verification accuracy when fused 

with the baseline i-vector system. However, it did not show 

improvement when used as a single system, and they used 

enrollment set in training of the DAE. Moreover, the 

demonstration performed only with a shallow network 

structure, even though their methodology can be expanded 

to deep structure. 

Our goal in this paper comes out from there. We start 

from aforementioned DAE-like system with deep structure, 

and develop it to overcome its drawbacks. To improve the 

DNN compensator, residual-learning [13] and principal 

components analysis (PCA) are applied. 
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The rest of this paper is organized as follows. Section 2 

describes the baseline and the proposed systems. Section 3 

explains the experimental setup. We report the experimental 

results in Section 4 and conclude the paper in Section 5. We 

provide a discussion about the relation between our work 

and the prior works in Section 6. 

 

2. METHODS 

 

2.1. I-vector/PLDA system (baseline1) 

 

We use the well-known i-vector/PLDA system in this 

research. Fig. 1 shows the overall procedure. 

 

 
Fig. 1. Overall flow diagram 

 

Length-normalized i-vectors are obtained by means of 

acoustic feature extraction, voice activity detection (VAD), 

and cepstral mean and variance normalization (MVN) 

processes. We train the universal background (UBM), total 

variability matrix (TVM), and probabilistic linear 

discriminant analysis (PLDA) models using development 

data. Linear discriminant analysis (LDA) is applied to 

length-normalized i-vectors for the compensating session 

and utterance variations. 

An i-vector [14, 15] is extracted by means of the 

following equation: 

 

M = m + Tw,                       (1) 

 

where M is the speaker and channel dependent GMM 

supervector; m is the speaker and channel independent 

supervector (UBM supervector); T is a rectangular matrix of 

low rank, which is called total variability matrix (TVM); and 

w is a random vector having a standard normal distribution 

N(0, I), which is referred to as an i-vector. After i-vectors are 

extracted, length normalization and PLDA are applied [1, 

16]. 

 

2.2. DAE-baseline (baseline2) 

 

The DAE-baseline approach, in this research, is 

conceptually equivalent with [12]. But there are some 

differences in details. Mainly, we use deeper structure and 

do not use enrollment set on training of network. Another 

trivial details will be denoted in the next section. 

In this approach, given a d-dimensional input feature 

vector w extracted from a short test utterance, a DNN 

compensated feature vector wdae is defined by the following 

equation: 

 

wdae = fθ (w),                      (2) 

 

where fθ denotes the DNN feed-forward procedure with 

parameter θ. We train the DNN with five hidden layers 

containing 2048 rectified linear units (ReLUs) [17] and 

linear output units, as shown in Fig. 2. To train this DNN, 

every utterance in a DNN training set is truncated to 10 s 

because the duration of each test utterance used in this 

research is 10 s. Let us represent the long- and short-

utterance features as wl,tr and ws,tr respectively. The DNN is 

then trained to minimize the mean squared error (MSE) 

between each original long-utterance feature vector wl,tr and 

the DNN compensated vector fθ (ws,tr) of the corresponding 

short-utterance feature vector ws,tr. Fig. 3 is composed of 

two-dimensional examples illustrating conceptual 

differences between DAE-baseline and proposed methods. 

Each DNN output activation is directly represented by a 

point on each coordinate axis in the i-vector space (Fig. 3a). 

However, this does not work well because the given 

information is minimal and the search space is too large. 

 

2.3. Applying residual-learning (proposed1) 

 

Kim et al. introduced the residual-learning method in [13] to 

solve vanishing/exploding gradients problem on image 

super-resolution domain. According to their research, 

training the residual image between an input low-resolution 

image and target high-resolution image as an output of 

network is faster than the case of training the target image 

directly. Although their research area is different from ours, 

the objectives of optimization and network structures are 

very similar. So, we expect residual-learning technique is a 

helpful way to train DNN compensator. 

We calculate every residual feature vector wl,tr - ws,tr in 

the DNN training set. The DNN is then trained by these 

residual feature vectors, which are used as target labels 

oresidual = wl,tr – ws,tr. The DNN compensated feature vector 

wresidual is defined by the following equation: 
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wresidual = w + fθ (w).                      (3) 

 

In this case, we assume that the adequate feature vector 

can be represented with this additional information by the 

translation of a given short-utterance feature vector, and we 

expect the DNN can be trained more easily (see Fig. 3b). 

 

 
Fig. 2. DNN training diagram for short utterance 

compensation 

 

2.4. Reducing the dimensionality of search space 

(proposed2) 

 

Finally, we apply principal components analysis (PCA) to 

reduce the dimensionality of the search space during the 

DNN training step. The target label opca and DNN 

compensated feature vector wpca are defined by the following 

equations: 

 

opca = (C-1)T [wl,tr – ws,tr],                   (4) 

wpca = w + CT fθ (w),                      (5) 

 

where C is a (t x d) matrix containing d-dimensional t 

principal components (PCs) estimated from the DNN 

training set. The residual vectors between every long-

utterance feature vector and its corresponding short-

utterance feature vector are calculated from the DNN 

training set, as shown in Fig. 3c. Eigenvectors are estimated 

from a covariance matrix of these residual vectors, as 

illustrated in Fig. 3d, and the t eigenvectors that correspond 

to the first t largest eigenvalues are selected as the PCs to 

reduce dimensionality. In this case, the translation after 

DNN feed-forwarding operates along each direction of the 

selected PCs, as shown in Fig. 3e. 

 
Fig. 3. Two-dimensional examples of the DAE-baseline and 

proposed methods  

(a) DAE-baseline used in Eq. (2)  

(b) Translation with additional vector used in Eq. (3)  

(c) Calculation of residual vectors for PCs 

(d) Estimating PCs used in Eq. (4)-(5) 

(e) Translation operation used in Eq. (5) 

 

3. EXPERIMENT SETUP 

 

We used the NIST 2008 SRE corpus [18] to evaluate the 

proposed method. Specifically, det6 of a short2-10sec 

condition (male speakers only) were used. The short2-10sec 

condition was designed to evaluate speaker verification 

performance with a long-training utterance (approximately 

2.5 min) and short-test utterance (10 s). For a development 

set, NIST 2004 SRE test, NIST 2005 SRE, NIST 2006 SRE 

training, Fisher English training and Switchboard cellular 

corpora were used. We used only male speaker utterances in 

these corpora as development data. DNN training utterances 

are randomly selected from whole development set with 

portion of 0.9. Remainders used as DNN validation set. 

As acoustic features, 20 mel-frequency cepstral 

coefficients and their first and second derivatives were 

extracted. The energy-based VAD and MVN were applied 

and a gender dependent UBM (male only) with 2048 

Gaussian components was trained. The dimensionality of 

total variability subspace was set to 400 and every i-vector is 

normalized by length normalization to have unit length. 
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Final dimensionality of i-vectors reduced to 150 by linear 

discriminant analysis. PLDA modeling and scoring were 

applied. We used the Kaldi [19] toolkit for these steps. For 

s-normalization, we randomly selected 200 utterances from 

the NIST 2004 SRE corpus for use as reference data. 

We used Keras [20] with Theano backend engine to train 

the baseline and proposed DNNs. Each DNN is constructed 

using five hidden layers having 2048 nodes. ReLUs and 

linear units were used as activation functions of hidden and 

output layers, respectively. The loss function is the mean 

squared error. The learning rate decayed by a decay factor of 

0.01 from an initial value of 10.0. The size of the mini-batch 

is 1000 and momentum is applied with a factor of 0.9. The 

batch normalization and dropout [21] with a rate of 0.5 for 

every hidden layer were applied. After DNN training, we 

chose the weights and biases that have minimum validation 

errors as final parameter θ of the DNN. When applied PCA, 

we set the number of PCs to in the range from 150 to 75 

with an interval of 25, and the weights of five hidden layers 

on previous network are used as the initial weights on next 

network training repeatedly. For example, the final 

parameters of the network with 150PCs are used as the 

initial weights of the network with 125PCs. 

We also evaluated performances in a situation when both 

speaker training and testing utterances are limited to 10 s. 

For this evaluation, each speaker training utterance in 

short2-10sec condition is randomly truncated to be 10 s long. 

In this case, unlike when only testing utterances are short, 

both training and testing feature vectors are compensated by 

DNN respectively. 

 

4. RESULTS 

 

Table 1 shows the minimum detection cost function 

(minDCF) of the experimental results. ‘I-vector’ denotes 

results of the canonical i-vector/PLDA system. ‘+residual-

learning’ and ‘+pca’ mean the proposed methods using 

residual-learning and PCA respectively. 

 

Table 1. Experiment results on NIST08 SRE short2-10sec 

(det6, male, minDCF) 
DNN 

training 

length 

method 

speaker training length 

full 
truncated 

(10 s) 

10 s 

I-vector 0.0396 0.0600 

DAE-baseline 0.0616 0.0865 

+residual-learning 0.0394 0.0600 

+pca (with 150PCs) 0.0384 0.0587 

+pca (with 125PCs) 0.0375 0.0574 

+pca (with 100PCs) 0.0375 0.0578 

+pca (with 75PCs) 0.0377 0.0581 

15 s 

+pca (with 125PCs) 

0.0386 0.0592 

20 s 0.0388 0.0599 

25 s 0.0393 0.0589 

The results show that DAE-baseline performs more 

poorly than the canonical i-vector system. The performance 

of residual-learning is comparable to that of the canonical i-

vector system but not sufficient, whereas PCA applied 

method with 125PCs shows slightly better minDCF than 

does the i-vector baseline system. Moreover, the proposed 

method showed improvement even when both speaker 

training and testing utterances are short. Unfortunately, 

equal error rates on proposed systems are comparable with 

canonical i-vector system but did not show significant 

improvement. We used various training length (15s, 20s, 

25s) other than 10s to see how different truncated lengths 

affect the results, but the results show no advantage of using 

longer training utterances. 

 

5. CONCLUSION 

 

We proposed and demonstrated DNN structures for speaker 

verification to compensate for short test utterances. The 

DAE-baseline approach which is equivalent with [12] did 

not show improvement as a single system. But applying 

residual-learning raised the performance up to the same level 

of canonical i-vector system. With dimensionality reduction 

of search space using PCA, the proposed method gave 

reduced minDCF (0.0375) of 5.3% relative to the i-

vector/PLDA method (0.0396). 

As a future work, we are going to investigate how 

dimensionality reduction on the proposed method brings 

performance improvement. We also plan to replace the PCA 

to a nonlinear reduction technique, such as a deep auto-

encoder [22]. 

 

6. RELATION TO PRIOR WORK 

 

We proposed a short utterance compensating method using 

deep neural networks. The work by Yamamoto et al. [12] 

includes enrollment set in DNN training, which we do not 

think appropriate for practical use because we cannot train 

the network for every enrollment speaker. In this research, 

we demonstrated the deeper version of their method and we 

improved the performance of a system without using 

enrollment set on DNN training. In this process, we found 

that residual-learning and dimensionality reduction 

techniques help to improve minDCF even when both 

training and testing utterances are short. 
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