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ABSTRACT

We examine the effect of the Group Lasso (gLasso) regularizer in
selecting the salient nodes of Deep Neural Network (DNN) hidden
layers by applying a DNN-HMM hybrid speech recognizer to TED
Talks speech data. We test two types of gLasso regularization, one
for outgoing weight vectors and another for incoming weight vec-
tors, as well as two sizes of DNNs: 2048 hidden layer nodes and
4096 nodes. Furthermore, we compare gLasso and L2 regularizers.
Our experiment results demonstrate that our DNN training, in which
the gLasso regularizer was embedded, successfully selected the hid-
den layer nodes that are necessary and sufficient for achieving high
classification power.

Index Terms— Deep neural networks, Group Lasso regulariza-
tion, Speech recognition

1. INTRODUCTION

Motivated by the recent rise of Deep Neural Networks (DNNs) for
speech recognition [1], we studied the utility of DNN-based speaker
adaptation [2, 3]. A DNN’s high capability is mainly derived from
a deep layer structure and a massive amount of network weight pa-
rameters. Therefore, roughly speaking, the larger and deeper the
network, the higher its performances are. However, a large network
is obviously undesirable from the viewpoints of computational load
and memory size; it is also unfavorable from the viewpoint of con-
trolling training robustness to unseen data. To meet this requirement
for finding a small, necessary, and sufficient DNN structure, several
approaches have reshaped the network structure [4, 5, 6] or pruned
the network nodes [7]. However, these methods assumed retraining
or adapting a size-reduced network for high discriminative power.
Therefore, a need obviously exists for developing training methods
that can automatically (without additional retraining and adaptation)
find a small but sufficient DNN structure.

Seeking such development, we propose in this paper a new train-
ing scheme that embeds group Lasso (gLasso) regularization [8, 9]
for hidden layer weight vectors. To examine its feasibility, we imple-
ment it in a large-scale DNN-HMM speech recognizer and conduct
various evaluation experiments in a difficult task: TED Talks.

Quite recently, a gLasso-based idea similar to ours was reported
[10]. However, we independently studied it and elaborated the char-
acteristics of its scheme in large-scale experiments. In Section 4, we
will discuss the relationship between our work and related works,
including [10].
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Research No. 26280063, MEXT-Supported Program “Driver-in-the-Loop,”
and Grant-in-Aid for JSPS Fellows.

(a) Outgoing (b) Incoming

Fig. 1. Schematic explanation of outgoing/incoming weight vector
grouping.

2. DEEP NEURAL NETWORK TRAINING ASSOCIATED
WITH NODE SELECTION

2.1. Computational Procedures in DNNs

We consider a standard L-layer DNN, where the 0th layer is an input
layer, the L-th layer is an output layer, and the 1st through (L−1)-th
layers are hidden layers. In this network, the l-th layer consists of
Nl nodes, each of which is associated with a bias coefficient. The
nodes are also fully connected among the adjacent layers, and each
connection is associated with a weight parameter.

When a vector pattern is given to the input layer, the network
feeds the data from the input layer to the output layer in the following
layer-by-layer manner:

al = Wlzl−1 + bl, and zl = σ(al), (1)

where Wl is the weight matrix between the (l − 1)-th and l-th lay-
ers, bl is the bias vector of the l-th layer, zl−1 is the output vector
from the (l − 1)-th layer, al is the activation vector in the l-th layer,
and σ( ) is an activation function. Here, the i-th row and j-th col-
umn element of Wl are wl

ij , which is the weight parameter between
the j-th node of the (l − 1)-th layer and the i-th node of the l-th
layer; the vectors are detailed as follows: al = [al

1 · · · al
i · · · al

Nl
],

zl−1 = [zl−1
1 · · · zl−1

j · · · zl−1
Nl−1

] and bl = [bl1 · · · bli · · · blNl
], where

al
i, z

l−1
j , and bli are respectively the aggregated input to the i-th node

of the l-th layer, the output from the j-th node of the (l−1)-th layer,
and the bias of the i-th node of the l-th layer.

2.2. Node Selection without Activation Changes

Figure 1 illustrates an example situation of the node connections be-
tween the (l − 1)-th layer (of the 2 nodes) and l-th layer (of the 2
nodes). As shown on its left and right sides, we can basically group
the connections in two ways: 1) outgoing bundle or 2) incoming bun-
dle. Based on these groupings, we further group their corresponding
weights in outgoing weight vectors (wl

1 and wl
2) or incoming weight

vectors (w̃l
1 and w̃l

2). Here, the outgoing weight vectors are column
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vectors, which form the columns of weight matrix Wl; the incoming
weight vectors form the rows of Wl.

In the figure, for example, if the norm of wl
2 is nearly zero and

the norm for wl
1 exceeds zero, al is essentially based only on zl−1

1 ,
i.e., the outputs from the 1st (νl−1

1 ) node in the (l−1)-th layer. In this
situation, even if we remove node νl−1

2 , al has no large changes and
retains the DNN performances that were gained before node pruning.
On the other hand, again for example, if the norm of w̃l

2 is nearly
zero and the norm for w̃l

1 exceeds zero, a(l+1) is essentially based
on zl1 and bl2 (≈ zl2). In this situation, even if we prune node νl

2,
a(l+1) has no large changes and the DNN performances accordingly
remain almost the same. However, because the node is pruned based
on its weight vector norm, its bias remains as a constant. Therefore,
we have to remember here to shift the bias for the pruned node to the
upper layer nodes.

As above, regardless of the weight vector grouping, if we can
control the values of the weight vector norm in the DNN training,
or more precisely, selectively minimize the norm values, we can
also achieve a mechanism that automatically selects nodes without
changes in the performances of the trained DNNs.

2.3. DNN Training with gLasso and L2 Regularizers

2.3.1. Definition of regularized loss

The node selection in 2.2 is naturally expected to be done so that
only the salient nodes that produce useful outputs for increasing the
DNN’s performances are retained. If DNN training is done to con-
currently minimize a loss function that reflects the DNN’s classifica-
tion errors and a function that reflects the norm values of the outgo-
ing/incoming weight vectors, the unnecessary nodes, which produce
useless outputs (for the DNN performances), are automatically dis-
abled by their corresponding small norm values and only the salient
nodes will be retained.

To implement such training, we adopt gLasso regularization for
the outgoing or incoming weight vectors in standard DNN training
using Cross Entropy (CE) loss. Focusing on the outgoing weight
vector case, we formalize our proposed training scheme below. The
resulting formalization is basically common to that in the incoming
weight vector case. Note that the target layer for grouping is different
between types of grouping.

Our training scheme starts by defining regularized loss L( ) as
follows:

L(Λ) = E(Λ)+αR̂group({Wl}Ll=2)+βR̂L2(W
1, {bl}Ll=1), (2)

where Λ is a set of trainable parameters of DNN, i.e., Λ =

{{Wl,bl}Ll=1}, E( ) is the CE loss, R̂group( ) R̂L2( ) are respec-
tively the gLasso and L2 regularizers, and α and β are positive
constants that control the effects of their corresponding regularizers.
Here the gLasso regularizer is specified as

R̂group({Wl}Ll=2) =

L∑
l=2

Rgroup(W
l), (3)

where Rgroup(W
l) =

∑Nl−1

j=1 ∥wl
j∥ , and the L2 regularizer is spec-

ified as

R̂L2(W
1, {bl}Ll=1) = RL2(W

1) +

L∑
l=1

RL2(b
l), (4)

where RL2(W
l) = 1

2
∥Wl∥2 and RL2(b

l) = 1
2
∥bl∥2 .

2.3.2. Effects of gLasso regularization

The status of Λ that corresponds to the minimum of L(Λ) will pro-
vide high classification power with selected network nodes. To find
that status, we minimize L(Λ) using the standard gradient-based op-
timization procedure.

In the above gradient-based loss minimization for L(Λ), the gra-
dient terms of the regularizers play a key role in accelerating the
minimization. In the L2 regularizer case, the gradient of RL2( ) is
given as follows, for example, in terms of wl

j :

∂RL2(W
l)

∂wl
j

= wl
j . (5)

In contrast, the gradient of the gLasso regularizer becomes

∂Rgroup(W
l)

∂wl
j

=
wl

j

∥wl
j∥

. (6)

Eq. (6) clearly indicates the effects of gLasso regularization; the
(“outgoing” in this case) weight vector rapidly converges to zero
when its norm is small. As a result, the node outputs, which are
less useful for the minimization of L(Λ), are disabled in an early
stage of the loss minimization, and the retained node outputs will be
dominantly used for the loss minimization.

2.4. Node Selection Procedure

If the weight vector norm becomes sufficiently small after the above
loss minimization, we can simply prune its corresponding nodes us-
ing a threshold value (θ). The node selection procedure is summa-
rized as follows: 1) calculate the gLassoO norm (column norm) or
the gLassoI norm (row norm) for all of the hidden layer nodes, 2)
prune the nodes whose norm values are less than θ, and 3) shift the
bias for the pruned node to the upper layer nodes, especially in the
gLassoI case. (See 3.2 for the definitions of gLassoO and gLassoI.)

3. EXPERIMENTS

3.1. Settings

To evaluate our proposed DNN training and node selection method,
we conducted speech recognition experiments using our DNN-
HMM hybrid speech recognizer over a TED Talks corpus that
consists of lecture speech data spoken by 793 speakers. For the
evaluation experiments, we divided the data into the following three
sets: training data by 774 speakers, validation data by 8 speakers,
and testing data by 11 speakers. The total length of the training data
was about 62 hours, the number of senone classes was 3,944, and
the vocabulary size was 179, 604.

We represented the input speech as a series of 11 acoustic fea-
ture vectors, each of which was of 39 dimensions and consisted of
MFCCs, log power, their first and second derivatives. The dimension
of the concatenated input vector was 429.

In our DNN-HMM hybrid speech recognizer, the front-end
DNN part was the 6-layer Multi-Layer Perceptron (L = 6 in 2.1)
with a sigmoid activation function, and the post-end HMM part
used a context-dependent acoustic model and a 3-gram language
model. We initialized the DNN part by the RBM pre-training [11].
Independently of the DNN part, we developed a HMM part using
Boosted MMI training [12].

The main target of our DNN training was to increase the senone
classification accuracy (SCA), whose categories were indicated by
the DNN outputs. However, we also evaluated the training results
using the word error rate (WER) obtained by the post-end HMM
part of the hybrid recognizer.
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Table 1. Achieved classification performances (%) in DNN2048

Regularizer SCAB WERB SCAA WERA

gLassoO 46.2 18.7 46.2 18.8
gLassoI 46.1 18.2 46.1 18.2

L2O 45.9 18.6 22.8 42.6
L2I 45.9 18.6 8.2 100.0

3.2. Evaluation procedures

We ran gradient-based training for minimizing L(Λ) in (2) several
times, along with changing such hyper-parameters as α and β in (2).
Nevertheless, for simplicity, we restricted β to β = 0.1α or β = 0.
In every training run, we repeated twenty epochs, in each of which
the whole set of training samples was used only once. Among the
different trained statuses of Λ, we selected the one that produced the
highest SCA value over the validation data, evaluated the SCA val-
ues for the selected status of Λ over the testing data, and measured
the WER values over the testing data using the selected DNN in the
hybrid recognizer.

In addition to experiments with our proposed training associ-
ated with the gLasso regularizer, we also tested (for comparison pur-
poses) the training using the L2 regularizer for all of the weight ma-
trixes and all of the bias vectors. Then, the loss in (2) was replaced
in this additional case by

L(Λ) = E(Λ) + β

L∑
l=1

{
RL2(W

l) +RL2(b
l)
}
. (7)

To elaborate the effects of our proposed training method, we
also tested two different DNN sizes: one with 2048 nodes for ev-
ery hidden layer (DNN2048) and another with 4096 nodes for every
hidden layer (DNN4096). For both DNN2048 and DNN4096, we eval-
uated the following four types of training: 1) with the gLasso reg-
ularizer for the outgoing hidden layer weight vectors (gLassoO), 2)
with the gLasso regularizer for the incoming hidden layer weight
vectors (gLassoI), 3) with the L2 regularizer for the outgoing hid-
den layer weight vectors (L2O), and 4) with the L2 regularizer for
the incoming hidden layer weight vectors (L2I). Particularly in the
L2O and L2I cases, we conducted common L2-regularized training
(which corresponds to the training using (7)) but selected different
nodes, based on the differences in grouping. Moreover, as stated in
2.3, we used in all four cases the L2 regularizer for all of the bias
vectors; We also used the L2 regularizer for the input layer weights
in the gLassoO case, and for the output layer weights in the gLassoI
case.

For convenience, we collectively refer to both the gLassoO and
gLassoI training cases as gLasso and L2 for both the L2O and L2I
cases.

3.3. Results

3.3.1. Fundamental performances

In Table 1, we summarize the SCA and WER values that we achieved
for DNN2048 in the four training cases: gLassoO, gLassoI, L2O, and
L2I. SCAB and WERB represent the SCA and WER values (%), both
obtained before the node selection; the SCA and WER values were
obtained after the node selection for SCAA and WERA.

First, we focus on the results in the SCAB and WERB columns.
Regardless of the weight vector grouping type and the regularizer
type, DNN training achieved such accurate classification perfor-
mances as an SCA of about 46% and a WER less than 19%. They
also show that the gLasso procedures achieved the performance that
were competitive with the L2 procedures, which are widely used in
the neural network training.

Fig. 2. Histogram of outgoing weight vector norm values in gLassoO
or L2O cases. Training was done for DNN2048. Top: gLassoO, Bot-
tom: L2O.

Next, we observe the characteristics of the weight vector norm
values that were obtained by the training. Figure 2 shows a his-
togram of the outgoing weight vector norm values in the gLassoO
or L2O cases for DNN2048. The horizontal axis indicates the weight
vector norm value, and the vertical axis indicates the frequency of its
corresponding norm value. From this figure, we obtained the follow-
ing findings: 1) The weight vector norm values by the gLassoO cases
were clearly separated into two groups, suggesting the ease with
which the threshold (θ) can be set for the node selection between
them; 2) The weight vector norm values reduced by the gLassoO pro-
cedure were rather small (at most slightly larger than 10−4). This
distinct reduction proves that the gLassoO process successfully re-
duced the norm values of some selected weight vectors. 3) The
weight vector norm values by the L2O case were concentrated in
the region between 100 and 101. This implies that the L2 procedure
failed to reduce the weight vector norm values.

Due to space limitations, we omit the introduction of the results
in the gLassoI and L2I cases. However, we obtained norm value
distribution that closely resembled that in Figure 2.

We return to Table 1 and compare the results in the SCAB and
WERB columns with those in the SCAA and WERA columns.

We executed node selection by setting θ to 10−2, which is
clearly far from the norm values in either of the two separate regions
generated by the gLasso training. Using this threshold, we pruned
3161 nodes from the five hidden layers in the gLassoO case (the
number of retained hidden layer nodes = 7079) and 3368 nodes in
the gLassoI (number of retained hidden layer nodes = 6872) case.
The performances gained after the node selection (in the SCAA and
WERA columns) are basically the same with those gained before
the node selection (in the SCAB and WERB columns). The com-
parison here clearly proves that, regardless of the type of weight
vector grouping, gLasso training sorted out the weight vectors by
selectively reducing the norm values for some weight vectors and
allowed node selection simply based on thresholding.

As Figure 2 shows, pruning a certain amount of nodes is not easy
from L2-based DNNs by setting a threshold. For comparison, we
removed (in ascending order) the small-norm nodes from the DNN
produced by the common L2-regularized training in the L2O case
until the number of removed nodes became identical to the gLassoO
case: 3161; similarly, in the L2I case, we removed 3368 nodes from
the L2-based DNN, which was the same with the network used in
the L2O case. The scores in the SCAA and WERA columns of Table
1 were obtained using these size-reduced L2-based DNNs. They are
much worse than those gained before the node selection and clearly
show that both the L2O and L2I cases failed to sort out the weight
vectors (as a result, their corresponding nodes).

To further analyze the effects of regularizer selection, we ob-
served the changes in the SCA scores along with gradually removing
hidden layer nodes, by 100 nodes, in increasing order of their norm
values. Figure 3 shows the SCA scores, each of which is a function
of the number of removed nodes. In the figure, the horizontal axis
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Fig. 3. Effects of regularizer selection in node selection in DNN2048.

Fig. 4. Number of disposal nodes for every hidden layer as a function
of training epoch in gLassoO-based DNN2048.

indicates the number of removed nodes; the SCA scores for the verti-
cal axis. If the nodes do not exist in the small norm value region, the
SCA scores gradually decrease as nodes are removed. On the other
hand, if the nodes exist in the small norm value region, the SCA val-
ues remain high and later decrease. The curves in the figure clearly
prove that the L2 procedure corresponds to the former situation and
the gLasso procedure achieves the latter desirable situation.

3.3.2. Properties of gLasso procedure

When introducing gLasso’s training scheme in 2.3, we stated that
the disposable nodes are disabled in some early training stage. To
investigate this point, we observed the number of disposable hidden
layer nodes for every hidden layer as a function of the training epoch.
Here we define a disposable node as one whose norm value is smaller
than 10−2. Figure 4 illustrates the observed numbers for all five
hidden layers (1st through 5th) of the gLassoO-based DNN2048. We
found the following: 1) Node selection was stably realized with the
training progress. 2) It occurred in such comparatively early epochs
as the 1st through 5th epochs. 3) It dominantly occurred in such
higher hidden layers as the 3rd and 4th.

The results in Figure 4 suggest that the gLasso procedure shows
a trend that mainly reduces the weight vector norm values in the
higher hidden layers. To scrutinize this trend, in both the DNN2048
and DNN4096 cases, we pruned the disposable nodes using the 10−2

threshold and observed the number of selected (retained) nodes for
every hidden layer. Figure 5 illustrates those numbers. Regardless
of the weight vector grouping (outgoing vs. incoming) or the DNN
size (DNN2048 vs. DNN4096), we found that the gLasso procedure
suppressed the weight vector norm values, specifically in the 3rd
and 4th hidden layers, and achieved a size-reduced and reshaped net-
work structure that was shared in all of the tested cases of gLassoO,
gLassoI, DNN2048, and DNN4096.

4. RELATED WORK

An orthodox approach for the size reduction of a large matrix is to
use Singular Value Decomposition. A large weight matrix in DNN
is decomposed into small matrixes and re-expressed (in the sense of
low-rank approximation) by replacing the small eigenvalues of the
decomposed diagonal matrix by zero [4, 5]. This approach allows

Fig. 5. Number of finally retained hidden layer nodes in gLassoO
and gLassoI cases.

parameter reduction without serious degradation of the original dis-
criminative power of the network. However, it does not reduce the
number of hidden layer nodes, and therefore it is probably insuffi-
cient to achieve a desirable amount of network parameter reduction,
especially in the case of using the network with the huge number of
hidden layer nodes.

For directly pruning the hidden layer nodes, the L1 norm of the
weight vectors was used as an important function. It resembles the
weight-grouping-based norm that we use in our proposed training
procedure [7]. However, because such mechanism of reducing the
norms in the training procedure as ours was not implemented, DNN
restructuring had to rely on additional retraining results.

To find a desirable DNN structure, the Genetic Algorithm (GA)
has been applied [13]. It has high potential for generating a target
structure, but it often needs an enormous amount of computational
resources.

Compared with the above related studies, our proposed training
that embeds the gLasso regularizer is characterized by two main ad-
vantages: 1) Even if no additional training is conducted, it can easily
produce node-pruned DNNs without performance degradation, and
2) its computation time is almost the same as conventional L2 regu-
larization.

Motivated by the gLasso procedure defined in linear regression
[8], approaches similar to ours were proposed [10, 14]. In [10], the
gLasso regularizer was defined for the outgoing vector grouping of
DNN and its effect was evaluated in various small- and middle-sized
tasks that classify fixed-dimensional patterns. In [14], the gLasso
regularizer was defined for the incoming vector grouping1 of neural
network-based language models and its effect was evaluated for shal-
low networks. Compared to these work, we studied in this paper both
the incoming and outgoing vector groupings and also elaborated our
proposed scheme in a large-scale speech recognition environment
using larger network structures.

5. CONCLUSION

We investigated the feasibility of the gLasso procedure, i.e., DNN
training associated with the gLasso regularizer, for hidden layer
weight vectors in a large-scale speech recognition task with the
DNN-HMM hybrid speech recognizer in a TED Talks task. We elab-
orated the nature of gLasso training by applying it to both outgoing
and incoming weight vector groupings and compared the gLasso
and L2 procedures, where the L2 regularizer was used for all of the
weight matrixes and all of the bias vectors. From the experiment
results, we clearly demonstrated that our gLasso procedure auto-
matically (without additional training) disabled less useful hidden
layer nodes without degradation in DNN classification performance
and successfully produced a small, necessary, and sufficient DNN
structure.

1The usage of bias term is different from our formalization.
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