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ABSTRACT

Deep neural networks (DNN) have achieved significant suc-
cess in the field of speech recognition. One of the main ad-
vantages of the DNN is automatic feature extraction with-
out human intervention. Therefore, we incorporate a pseudo-
filterbank layer to the bottom of DNN and train the whole fil-
terbank layer and the following networks jointly, while most
systems take pre-defined mel-scale filterbanks as acoustic fea-
tures to DNN. In the experiment, we use Gaussian functions
instead of triangular mel-scale filterbanks. This technique en-
ables a filterbank layer to maintain the functionality of fre-
quency domain smoothing. The proposed method provides an
8.0% relative improvement in clean condition on ASJ+JNAS
corpus and a 2.7% relative improvement on noise-corrupted
ASJ+JNAS corpus compared with traditional fully-connected
DNN. Experimental results show that the frame-level trans-
formation of filterbank layer constrains flexibility and pro-
motes learning efficiency in acoustic modeling.

Index Terms— automatic speech recognition, deep neu-
ral networks, acoustic models, filterbank learning, data-driven
filterbank

1. INTRODUCTION

Deep neural networks (DNNs) have been applied to auto-
matic speech recognition (DNN-HMM; deep-neural-network
hidden Markov models) and have outperformed conven-
tional Gaussian mixture model (GMM) based methods [1].
Recently, there has been a focus on the front-end learning
based on DNNs, such as speech enhancement and filterbank-
learning which takes low-level acoustic features [2, 3]. These
works show better performance compared to those based
on a hand-crafted procedure. This deep hierarchical feature
extraction under a simple objective function is one of the
main advantages of the DNNs. In [4] and [5], an analysis
is conducted to evaluate the difference between hand-crafted
filterbanks and learned filterbanks. These analyses show that
there is a similarity between the center frequency of mel-
scale filterbanks and learned filterbanks. However, learned
center frequency of filterbanks in [4] and [5] do not show

consistency. These results suggest that the shapes of learned
filterbanks depend on the task, especially in the presence of
background noise.

Earlier works on data-driven filterbank learning go back
to shallow neural networks. Biem, et. al. [6] learned filter-
banks and classifier jointly under the condition that the filter-
bank is parameterized by a Gaussian function. Accuracy was
improved by training filterbanks and classifier jointly. To our
knowledge, this method was not applied to a state-of-the-art
DNN based system. However, there are some studies that take
over the joint training of filterbanks and classifier. Sainath, et.
al. [7] learned filterbanks and classifier (DNN) jointly un-
der the restriction that the element of the filterbank is always
positive by introducing the exponential of weights, exp(W ).
This weak restriction does not give a function explicitly which
is the original purpose of hand-crafted triangular filterbanks.
That is to say, the parameters of pseudo-filterbanks overfit to
the given data and shape of pseudo-filterbanks lead to multi-
ple peaks. Such pseudo-filterbanks do not have the ability to
apply frequency-domain smoothing.

Unlike a fully connected layer, a convolutional layer of
CNN (Convolutional Neural Networks) focuses on small lo-
calized regions of the input speech [8]. CNN can extract
shift-invariant features and further improve recognition accu-
racy. In addition, weight sharing greatly reduces the number
of parameters and increases learning efficiency. Several stud-
ies further reduce the parameters by using Gabor filters as a
convolutional layer which takes Power-Normalized Spectrum
as the input feature [9].

In this paper, we introduce pseudo-filterbanks to a bottom
of DNN. In reference to [6], we use the Gaussian function as
pseudo-filterbanks. The Gaussian function has an advantage
over a convolutional layer in the number of free parameters
and in the fast adaptation of pseudo-filters. In the experi-
ment, the filterbanks and classifier (DNN) are trained jointly
and evaluated under a standard hybrid system and Weighted
Finite-State Transducer (WFST) decoder.

The rest of the paper is organized as follows. The re-
lated works are summarized in Section 2. The architecture
and training algorithm of the proposed system are presented
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in Section 3. Experimental setup and results are presented
in Section 4. Finally, Section 5 concludes the paper and dis-
cusses future work.

2. RELATED WORKS TO FILTERBANK LEARNING

Even though the performance of a DNN-HMM significantly
outperforms a GMM-HMM, a mismatch between the training
and testing conditions still deteriorates the performance of a
DNN-HMM. To solve this problem, several adaptation meth-
ods have been proposed for DNN acoustic models. Learn-
ing of fitlerbanks can be approximated by some of adaptation
methods, though there are differencies with regard to expres-
siveness and constraint. We summarize related works to fil-
terbank learning in the next paragraph.

Adaptation techniques can be classified roughly into two
types: feature space adaptation[10] and model adaptation.
Feature space adaptation such as fMLLR (feature-space Max-
imum Likelihood Linear Regression) and VTLN (Vocal Tract
Length Normalization) try to extract invariant features in
a GMM-derived manner [11]. Model adaptation of DNN
tries to fine-tune a large number of parameters directly using
limited adaptation data. Li, et. al. [12] inserted an addi-
tional linear layer to the bottom of DNN (LIN; Linear Input
Network). The parameters of this affine transformation are
trained discriminatively. Seide, et. al [11] also inserted an
additional linear layer which was tied across neighbor frames
(fDLR; feature-space discriminative linear regression). By
introducing a block-diagonal matrix (layer) and ignoring the
connections between the external frames, the same transfor-
mation is applied to individual frames. Likewise, VTLN is
approximately represented as a tridiagonal matrix [13]. This
indicates that the expressiveness of VTLN is included in the
fDLR. The fDLR is again included in the LIN.

3. DISCRIMINATIVE TRAINING OF GAUSSIAN
FILTERBANKS

In this section, we describe the overview of the proposed sys-
tem. We first describe the pseudo-filterbanks to be incorpo-
rated into DNN in Section 3.1. Then we present how we train
the whole network jointly in Section 3.2.

3.1. Gaussian filterbanks

For acoustic feature extraction, triangular filters like HTK tool
[14] are commonly used to compute mel-scale filterbank fea-
tures. However, a triangular filter is not differentiable and
unable to be incorporated into a scheme of a backpropagation
algorithm. In addition, the filter to be incorporated should
be computationally simple because the summation over fre-
quency bins is required in every feedforward computation of
neural networks. Therefore, a function of filter must be dif-
ferentiable and simple.

Fig. 1. Overview of the filterbank-incorporated DNN. The
horizontal axis is for the frequency bin, and the vertical axis is
for the power spectrum. In the experiment, input power spec-
tra are concatenated from several consecutive frames (depth).

In the experiment, pseudo-filterbanks are modeled using
Gaussian function [6]:

θn(f) = φn exp {−βn(p(γn)− p(f))}2 (1)

where θn(f) is the n-th filter at frequency f . φn is the gain
parameter, βn is the bandwidth parameter, and γn is the cen-
ter frequency. Linear frequency f is mapped on the Mel scale
by the function p(f). Trainable parameters are as follows:
φn (gain), βn(bandwidth), and γn(center frequency). Both a
traditional triangular filter and a Gaussian filter maintain the
functionality of frequency domain smoothing. A main dif-
ference between the filters is the coverage of frequency bin.
A Gaussian filter focuses on all frequency bins while a tri-
angular filter zeroes out the frequency bins outside a certain
distance of bins.

3.2. Training algorithm

The overview of the Gaussian-filterbank-incorporated DNN is
shown in Figure 1. Power spectra x(f) are concatenated and
fed into the pseudo-filterbanks. These features are multiplied
by the corresponding filter gain by Equation 1 and summed
across the frequency bin. Then applying a log-compression
gives log-mel (pseudo-) filterbank feature:

hn = log(
256∑
f

θn(f)x(f)) (2)

hn are fed into the following DNN. The parameters of filter-
banks are trained within the framework of backpropagation.
The update rule of φn, for example, is as follows:

φnew
n = φold

n − η
∂L

∂φn
(3)
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where L is an objective function, and η is a learning rate.
βn(bandwidth) and γn(center frequency) are updated in the
same manner.

When we focus on the gain parameter, it corresponds to
fMLLR. On the other hand, when we focus on the shift of cen-
ter frequency, our proposed system has an ability similar to
VTLN. VTLN is implemented by warping the frequencies of
Mel-scale filterbanks. This frequency warping is also accom-
plished by a shift of the center frequency in the proposed sys-
tem. In addition, there are some advantages compared to con-
ventional VTLN and fDLR. First, the proposed system can
apply VTLN in a discriminative manner based on backpropa-
gation. Second, pseudo-filterbanks can be constructed using a
small number of parameters by assuming the Gaussian func-
tion. This technique dramatically decreases the number of
parameters, and is advantageous in terms of model adaptation
compared to other data driven feature extractors.

The proposed system was trained in two stages. First,
DNN except for pseudo-filterbanks are fine-tuned (here-
inafter, referred to as “fixed model”). Then the pseudo-
filterbanks and following DNN are trained jointly (here-
inafter, referred to as “trained model”).

4. EXPERIMENTS

4.1. Experimental Setup

We used ASJ [15]+JNAS [16] to train acoustic models and
learn data-driven center frequencies. ASJ+JNAS consists of
20,337 (≈33 h) and 25,056 (≈44 h) newspaper sentences ut-
tered by 133 male speakers and 164 female speakers, respec-
tively. In addition to the above corpora, we further evalu-
ated the proposed system under noisy speech to learn data-
driven gain parameters. We added noises from a NOISEX-
92 database [17] to a quarter of the speech of ASJ+JNAS ut-
tered by male speakers while varying the signal-to-noise ratio
(SNR). Noise types of speech, car, F16, and Lynx with 10 dB,
15 dB, and 20 dB SNRs are used to deteriorate the speech. In
total, the second training data (noise corrupted ASJ+JNAS)
consists of 81,357 sentences (20337 utters. + 5085 utters. ×
4 noise types × 3 dB types, ≈134 h). The speech was ana-
lyzed using a 25-ms Hamming window with a pre-emphasis
coefficient of 0.97 and shifted with a 10-ms frame advance.

For an evaluation set, we used an IPA 100 test set consist-
ing of 100 utterances uttered by 23 male speakers. As with
the training data, we added the noise of speech, a car, an F16,
and Lynx for the closed noise set, and machine gun, STITEL,
a factory, and an operation room for the open noise set (≈5.3
h). An evaluation is conducted using Word Error Rate (WER).

We used a standard DNN-HMM hybrid system and rec-
tified linear unit for an activation function [18]. Triphone
HMMs were trained using an HTK toolkit [14]. The num-
ber of senones were set to 2087 for male speakers and 2562
for female speakers.

Table 1. WERs of baseline fully connected DNN and
filterbank-incorporated DNN (clean trained).

system WER [%]
Male Female

baseline (triangle) 4.2 4.6
Gaussian (fixed) 4.6 5.0

Gaussian (trained) 3.8 4.3

A tri-gram based language model was trained on the
Mainichi newspaper corpus (11,533,739 words in total, vo-
cabulary size of 20,000 words) [19]. As the decoder, we used
SPOJUS++(SPOken Japanese Understanding System) WFST
version [20]. Next, we describe the experimental setup with
respect to each acoustic model.

Baseline DNN
As a baseline system, we trained a fully connected DNN.
The DNN has five hidden layers with 2,048 rectified
linear units. Its input was 11 continuous frames of 40-
dimensional log mel-scale filterbanks extracted by the
HTK toolkit [14]. The features were normalized to zero
mean and unit variance.

Incorporation of pseudo-filterbanks
We trained a fully connected DNN with pseudo-filterbanks.
In our system, the system has a filterbank layer composed
of 440 (log-) units at the bottom and five hidden layers
with 2,048 rectified linear units at the middle. Its in-
put was 11 continuous frames of 256-dimensional power
spectra. The number of pseudo-filterbanks was set to 40
the same as in the baseline system (n = 1, 2, ..., 40). Ini-
tial values of pseudo-filterbanks are set as follows: Gains
are set to 1.0, center frequencies are spaced equally along
a Mel-scale, and bandwidths are set so that Two Sigma
is equal to the corresponding bandwidth of the Mel-scale
filterbank.

DNN with fDLR
We also trained DNN with fDLR. In this model, we in-
serted fDLR to the bottom of a baseline DNN. We used
identity matrix as an initial value of fDLR. Except for
the additional linear layer, the experimental setup of this
model is as the same as the baseline DNN.

For network training, we used an annealing strategy with
stochastic gradient descent (SGD) and momentum. When the
frame level accuracy of the development set decreased, the
learning rate was halved until it reached a minimum value
for stopping. A 1% of training data were subtracted for the
development set.

4.2. Evaluation Results

We first evaluated the proposed system under a clean ASJ+JNAS.
Table 1 shows the WER of a baseline (triangle) DNN and
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Table 2. Results on noisy ASJ+JNAS in WER under optimum condition (multi-condition trained).

system
WER [%]

closed noise set open noise set

clean speech car F16 Lynx
machine

gun STITEL factory
operation

room Avg.
baseline (triangle) 6.6 10.6 7.9 11.0 10.1 21.4 43.4 38.1 48.0 21.9
Gaussian (trained) 5.8 10.6 7.8 12.1 10.9 24.1 41.1 36.4 42.9 21.3

Fig. 2. Tuned parameters of Gaussian filters.

Table 3. WERs of DNN which includes fLDR in a training
stage (clean trained).

system WER [%]
Male Female

baseline (triangle) + fDLR 3.7 4.5

DNN with pseudo-filterbanks. A baseline fully-connected
DNN, which takes triangular filterbanks, achieved a WER of
4.2% for male speakers and 4.6% for female speakers. By in-
troducing Gaussian filterbanks to the DNN, the trained model
showed the best performance though the fixed Gaussian filter-
banks were worse than the fixed triangular filterbanks. These
results indicate that the discriminatively trained filterbanks
improve performance. The shapes of the initial filterbanks
and the learned filterbanks are depicted in Figure 2. From this
figure, the center frequencies of the trained models do not dif-
fer from the mel scale and the tuning of gains contributes to
performance. These learned gains showed different values
dependent on male and female.

We also trained DNNs with the baseline (triangle) filter-
bank which contained fDLR to mimic the modeling ability
of a framewise operation of a Gaussian filterbank. Table 3
shows the WER of fDLR. By introducing fDLR, WERs show
the same performance as the trained model of the Gaussian
filterbank-incorporated DNN. We can find that the frame-
level transformation of the filterbank layer and the fDLR
constrain flexibility and promote learning efficiency. The

fDLR is mainly used to apply model adaptation. However,
the fDLR is also beneficial during the training stage.

Next, we evaluated our system using noise corrupted
ASJ+JNAS. Results are shown in Table 2. As same as the
previous experiments on the clean ASJ+JNAS, we trained
fully-connected baseline DNN and filterbank-incorporated
DNNs. In this table, we summarized a WER with respect
to clean speech and noise types. WERs of noisy speech are
averaged over SNRs. The WERs over a whole test set are
presented in the last column. The baseline system obtained a
21.9% average WER on the test set. Also, the trained model
provides a WER of 21.3%, which gives a 2.7% relative im-
provement in WER over the baseline DNN. When we apply
data-driven filterbanks, it appears to fit into the given training
data in an excessive manner. However, improvements over
the baseline DNN were obtained under the open noise set
except for “machine gun”. By introducing data-driven filter-
banks composed of a Gaussian function, the filterbank layer
can act as a more robust feature extractor under unknown
conditions compared with handcrafted triangular filterbanks.

5. CONCLUSIONS

In this paper, we introduced a pseudo-filterbank layer to the
bottom of DNN and trained whole networks jointly. The
proposed systems are evaluated on ASJ+JNAS corpora and
noise-added ASJ+JNAS corpora. The experimental results
showed the effectiveness of the proposed method. The DNN
with fDLR also improved recognition accuracy. We can find
that the frame-level transformation of the proposed system
and the fDLR promote improved learning efficiency.

One of our proposed future works is an adaptation of
Gaussian filterbanks. In such a situation, it is important to
devise which layers are to serve which functions. In other
words, a filterbank layer should concentrate on speaker- and
noise-specific functions such as VTLN to efficiently apply
adaptation. It should be noted that there is a big difference
between the center frequencies (0 ∼ 8000) and other weights
of the DNN. Therefore, the usage of same learning rate re-
strains further shift of center frequencies. Indeed, when we
trained our proposed system with Adam[21], we obtained a
larger shift of center friquencies compared with ones of SGD.
In the future, we will also investigate optimization methods
and relation to optimized filterbank parameters.
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