
MODIFICATION ON LSA SPEECH ENHANCEMENT FOR SPEECH RECOGNITION

Chang Huai You, Bin Ma, Chongjia Ni

Institute for Infocomm Research, A*STAR, Singapore

ABSTRACT

Speech recognition performance deteriorates in face of unknown
noise. Speech enhancement offers a solution by reducing the noise
in speech at runtime. However, it also introduces artificial distor-
tions to the speech signals. In this paper, we aim at reducing the
artifacts that has adverse effects on speech recognition. With this
motivation, we propose a modification scheme including smooth-
ing adaptation to frame SNR and reestimation of a priori SNR for
spectral-domain log-spectral-amplitude (LSA) speech enhancement.
The experiments show that the proposed scheme of enhancement
significantly improves the performance of the state-of-the-art speech
recognition over the baseline speech enhancement.
Index Terms: speech enhancement, speech recognition, a priori SNR

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) system works
well under clean environmental situation [1] [2]. However, the pres-
ence of noise at runtime introduces a mismatch between the training
condition and test condition. In practice, one of the solutions is the
multi-conditional modeling which trains the acoustic models with
various noisy databases to cover different kinds of noise environ-
ment [3]. Unfortunately, such technique fails in face of unknown
noise condition [4]. An alternative to overcome unknown noise con-
dition is to train the acoustic models on clean speech data and apply
speech enhancement techniques to improve the runtime speech qual-
ity under noise condition [5]. With the speech enhancement solution,
one can focus on developing a high quality clean acoustic model, a
sharper model than a multi-condition acoustic model.

ASR speech enhancement aims to improve the quality of noisy
speech input at runtime to reduce the mismatch with the trained
acoustic models. In 1991, Hanson and Clements introduced a con-
strained iterative enhancement for speech recognition [6], where an
iterative Wiener filtering with vocal tract spectral constraints was
formulated using interframe and intraframe constraints based on line
spectral pair transformation. The performance evaluation was based
on a standard, isolated-word recognition system. In 2006, Gemello
et al proposed a modification of Ephraim-Malah log-spectral ampli-
tude method by introducing an overestimation of noise power and
spectral floor into a priori SNR and a posteriori SNR with respect
to frame SNR [7]. Significant improvement is reported for Aurora
speech recognition system. In 2008, Breithaupt et al proposed a
cepstral-domain smoothing method for estimation of a priori SNR
[8], and the experiment that was done with Wiener filter shows im-
provement over conventional decision-directed approach. However,
the effectiveness of the a priori SNR estimation method is only
proven in terms of speech enhancement objective measurement but
not proven in terms of speech recognition performance. In the same
year, Yu et al applied the Ephraim-Malah minimum mean square er-
ror (MMSE) criterion into speech feature domain [9] instead of the
discrete Fourier transform (DFT) domain for noisy speech recog-
nition. The performance was investigated on the standard Aurora
speech recognition platform [10]. In 2010, Paliwal et al investigated
the role of speech enhancement in speech recognition [11] where the
experiments were conducted on the TIMIT speech corpus, however,

there is no solution provided for the artificial distortion caused by the
investigated speech estimators against the speech recognition; and
also the speech recognition decoder is only based on small GMM-
HMM and a bigram language model. We observed that the enhancer
may be helpful for certain speech decoder but not always contribute
to another speech decoder, therefore it is meaningful to investigate
the performance with a typical state-of-the-art decoding platform.

In [11], Paliwal et al investigated sixteen speech enhancement
methods for speech recognition, and gave a conclusion that the im-
provements in objective speech quality did not translate to the im-
provement of speech recognition; and an enhancer (with its default
settings) that produced best objective speech quality gives a poor
performance in speech recognition. Therefore, a speech enhance-
ment algorithm may significantly improve human listening expe-
rience [12] [13] [14], direct application of the enhancement algo-
rithm does not always work well for speech recognition system.
Ephraim-Malah’s LSA MMSE [15] is a typical spectral-domain en-
hancement method which may represent the conventional spectral-
domain MMSE speech enhancement techniques [16] [17] [18]. In
this paper, we choose the LSA speech estimator for modification,
and subsequently propose to improve the ASR speech enhancement
system for the purpose of the speech recognition in the following
aspects: the noise overestimation control, weak spectral component
flooring, oversuppression of unwanted residual noise, and a reesti-
mation of a priori SNR.

In order to build up a meaningful investigation system, we setup
a state-of-the-art evaluation platform which is reconstructible by
open-source speech recognition tool [19]. We build up the large
vocabulary speech recognition system with a series of the training
models that start from monophone, coarse triphone GMM-HMM to
detailed triphone GMM-HMM, and then DNN-HMM which follows
the pre-training of deep belief network (DBN).

In the remainder of the paper, we give a brief introduction of the
spectral-domain LSA speech enhancement algorithms used in this
paper in section 2. In section 3, we propose a series of modification
schemes for the speech estimators against speech recognition. The
evaluation is shown in section 4 and finally the conclusion is given
in section 5.

2. LSA SPEECH ENHANCEMENT ALGORITHM

2.1. LSA Speech Estimator

An observed noisy speech signal x(t) is assumed to be a clean
speech signal s(t) degraded by uncorrelated additive noise n(t),
i.e.,

x(t) = s(t) + n(t), 0 ≤ t ≤ T. (1)

Let Sk(l), Nk(l), and Xk(l) denote the kth spectral component of
the clean speech signal s(t), noise n(t), and the observed noisy
speech x(t), respectively, where l denotes the time frame corre-
sponding to time t in analysis interval [0, T]. The enhanced speech
spectrum is given by Ŝk(l) = Gk(l)Xk(l), where Gk(l) is the gain
function of the enhancement.

Motivated by a fact that the correlation between the spectral
components reduces when the analysis interval length increases, the
statistical independence assumption is applied into the estimation of
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short term speech spectral amplitude. As a result, minimizing the
mean square error of log spectral amplitude (LSA) equals |Ŝk(l)| =
exp{E[ln |Sk(l)| � Xk]}. In this regard, Ephraim and Malah de-
rived the gain function of the LSA-MMSE estimator [15]

Gk(l) =
ξk(l)

1 + ξk(l)
exp

{1

2

∫ ∞

υk(l)

e−t

t
dt
}

(2)

where υk is given by

υk(l) =
ξk(l)

1 + ξk(l)
γk(l). (3)

The definition of the a priori SNR ξk and a posteriori SNR γk is
given as follows

ξk(l) =
ηs(l, k)

ηn(l, k)
, γk(l) =

|Xk(l)|2

ηn(l, k)
(4)

where ηn(k, l) = E[|Nk(l)|2] and ηs(k, l) = E[|Sk(l)|2] are the
respective variances of the kth spectral components of noise and
speech within the l-th time frame.

The conventional decision-directed estimation of the a priori
SNR is given by [16]

ξ̂k(l) =

α
|Gk(l − 1)Xk(l − 1)|2

ηn(k, l)
+ (1− α)max[γk(l)− 1, 0].

(5)

The smoothing factor α is conventionally set to 0.98 [16] [17] [18]
[12]. which is found to be much less annoying and disturbing for
human listening. However, we observed that the best performance
of speech recognition is no long with 0.98, but is in the range of 0.7
∼ 0.9.

2.2. About Noise Estimation

Speech enhancement does actually include two main estimation
parts: the estimation of noise and the estimation of speech. The
quality of estimated speech with the same speech estimator heavily
depends on the accuracy of the estimate of the noise statistics. In
contrast with the speech estimator that is to reconstruct every instan-
taneous sample of the speech signal, the noise estimator is not to
restore the instantaneous noise spectral power, but only to estimate
its expectation, i.e., the noise spectral variance.

There are many noise estimation methods for speech enhance-
ment purpose. The typical methods include minimum statistics
tracking [20] a minimum searching with speech presence probabil-
ity (SPP) [21], MMSE-based noise estimation method [22] [23], and
the SPP MMSE noise estimation method [21]. Through many ex-
periments, we observed that the WER performance of SPP MMSE-
based noise estimation [24] outperforms both minimum statistics
in [20] and MMSE-based noise estimation in [23] in most of noise
situation, especially for high SNR situation. In this paper we only
focus on the speech estimation study based on a reliable estimate of
noise spectral power density. In the following experiment, we select
to report the performance results based on the SPP MMSE noise
estimation [24] applied on the reference noise in order to obtain a
reliable estimate of noise spectral variance ηn(l, k), so that we can
have a precious comparison for different speech estimators in terms
of speech recognition performance.

The idea of selecting the reference noise instead of noisy speech
is to avoid the interference from the speech signal leakage. With
the progress of the noise estimation techniques which are of less
or more drawbacks currently, the noise spectral variance estimation
will be approaching to its perfection. We believe that, with the noise
estimator applied on the reference noise in place of the noisy speech,
the experimental results for the performance comparison among dif-
ferent speech estimators is of meaningful value.

3. PROPOSED MODIFICATION SCHEME FOR SPEECH
RECOGNITION

For the purpose of speech recognition, we attempt to improve the
spectral-domain LSA speech enhancement by alleviating the arti-
facts in some aspects: a priori SNR and a posteriori SNR estima-
tion, deep suppression of unwanted residual noise, and reestimation
of a priori SNR.

3.1. Smoothing Adaptation for Noise Control and Weak Spec-
tral Floor

In MMSE estimation, statistical independence assumption leads to
the following subsequence: the spectral gain of a frequency bin is
only a function of a priori and a posteriori SNRs of the frequency
bin rather than those of other frequency bins. In fact, a good estimate
of a spectral amplitude is not only contributed from the information
of the same frequency parameters but also from other frequency pa-
rameters. Great amount of observations has proven that the frame
SNR is useful information contributed to the estimation of the speech
amplitude [17] [18] [7]. The frame SNR can be approximated by us-
ing the following equation [25]

Ξ(l) =

10 log10 max
{∑

k

{
max[(|Xk(l)| −

√
ηn(l, k) ), 0]

}2∑
k ηn(l, k)

, ε
}
(6)

where ε denotes a small positive number set to 2.22× 10−16.
After the estimation of ηn(k), we limit the processing noise vari-

ance with a control factor ρ(l) so that the processing noise variance
is to be η̆n(k) = ρ(l)ηn(k), which is able to mitigate the artificial
distortion while speech estimator works on it. Replacing the esti-
mated noise variance with the processing noise variance by using the
control factor ρ(l) is a way to control the noise overestimation. In
[7], Gemello et al proposed a modified Ephraim-Malah LSA method
that herein is marked GMEM, where the frame SNR (which was
also called global SNR there) is used to control the noise overesti-
mation and the floor of a priori and a posteriori SNRs with broken
segmental linear relationship.

In this paper, we propose to replace the broken linear relation-
ship with a smoothing relationship. Let ϕ denote a general sigmoid
function below

ϕ(x, r1, r2) =
1

1 + exp{(x− r1)/r2}
(7)

and we make the noise control factor ρ to be adapted by frame SNR
Ξ(l) as follows

ρ(l) = τ1ϕ
2(Ξ(l), s1, s2) + τ2 (8)

where τ1, τ2, s1 and s2 are constants.
In this paper, we empirically set s1=13.5, s2=5, τ1=2.6, and

τ2=0.001. Fig. 1 (a) shows the noise control factor ρ with respect to
the frame SNR (Ξ(l)) for the GMEM noise control factor and our
proposed smoothing noise control factor.

If the information carried by the weak spectrum can be safely
transferred, the performance of speech recognition will be signifi-
cantly improved. In [7], a spectral floor is introduced into the a pri-
ori and a posteriori SNRs for weak spectrum component and silence
period. However, the adaptation of spectral floor is also based on a
broken linear relationship. In this paper, our goal is to design the
weak spectral floor used to modify both the a priori and a posteri-
ori SNRs with smoothing adaptation to avoid the broken points that
may be harmful to the weak speech signal. Therefore, we propose
the weak spectral floor to be smoothly adapted by the frame SNR as
follows

ς(l) = (1 + κ)− ϕ2(Ξ(l), k1, k2) (9)
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Fig. 1. Noise control factors and weak spectral floor adapted to
frame SNR.

where κ is the lower bound of the flooring factor. Empirically we
set κ=0.01, k1=13.5, k2=5. Fig. 1 (b) shows the spectral SNR floor
adapted to the frame SNR (Ξ(l)) using the GMEM spectral floor
and our proposed spectral floor respectively.

With the noise overestimation and weak speech spectral floor-
ing, the a posteriori SNR is modified as follows

γ̆k(l) =

{
|Xk(l)|2
ρ(l)ηn(l)

, if |Xk(l)|2
ρ(l)ηn(l)

≥ ς(l) + 1;

ς(l) + 1, otherwise
(10)

and the a priori SNR is modified below

ξ̆k(l) =

{
ξ̌k(l), if ξ̌k(l) ≥ ς(l);
ς(l), otherwise

(11)

where ξ̌ is given as follows

ξ̌k(l) = α
|Ğk(l − 1)Xk(l − 1)|2

ρ(l)ηn(k, l)
+ (1− α)(γ̆k(l)− 1) (12)

where Ğk(l− 1) = Gk(ξ̆k(l− 1), γ̆k(l− 1)). It means the MMSE
gain function Ğk(l − 1) is actually the function of ξ̆k(l − 1) and
γ̆k(l − 1), which totally depends on the parameters in the previous
frame.

3.2. Oversuppression of Residual Noise

It has been known that musical noise can very apparently appear
in spectral suppression using spectral subtraction method [12]. In
fact, attenuation of very noisy speech with MMSE algorithm can
also cause the musical noise phenomenon. Since residual noise spec-
trum consists of peaks and valleys with random occurrences, we can
seek an oversuppression to attenuate the spectral excursions beyond
the MMSE criterion for improving speech quality.

We observed that an adaptive oversuppression function in re-
spect to frame SNR can effectively restrict the spectral excursions of
noise peaks to a lower bound so that descend the amount of the mu-
sical noise. Therefore, we propose to suppress the residual noise by
introducing a adaptive smoothing oversuppression factor as follows

ω(l) = 1 + (ϖ − 1)ϕ2(Ξ(l), w1, w2) (13)

where ϖ = 0.1 is the lower bound of the gain control factor, w1=-3,
and w2=2. Subsequently, the gain is modified as follows

¯̆
Gk(l) = ω(l)Ğk(l) (14)

Fig. 2 shows the oversuppression factor ω adapted to frame SNR.
When Ξ ≫ 0 dB, the gain is unchanged since ω(l) = 1. When the
frame SNR is lower than 0 dB, the factor is debated to much low ac-
cording to level of current frame SNR. The adaptive oversuppression
brings an obvious improvement for speech recognition. It is believed
that the adaptive oversuppression make the endpoints more correctly
be aligned during speech recognition.
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Fig. 2. Oversuppression factor adapted to frame SNR.

3.3. Re-estimation of a priori SNR

With the optimization for the speech amplitude estimation, it is be-
lieved that the estimation of a priori SNR should be improved and
closer to the true values if we can use the current frame estimated
suppression gain to replace the previous frame estimated gain in the
modified decision-directed equation. Since the maximum likelihood
estimate of E(|Sk(l)|2) is |Ŝk(l)|2, therefore, we can have the re-
estimate of a priori SNR with the computed gain Ğk(l) that depends
on an initial approximate of the modified a priori SNR ξ̆k(l) using a
modified version of the decision-directed approach (11) as follows

ξ̃k(l) =

max
[
αc

|Ğk(l)Xk(l)|2

ρ(l)ηn(k, l)
+ (1− αc)(γ̆k(l)− 1), ς(l)

]
.

(15)

Experiment shows that the reestimation reduces the feature dis-
tortion for speech recognition, and the best result falls on αc = 1.
Subsequently, the reestimation of the a priori SNR is only based its
definition in (4).
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Fig. 3. The scheme of the proposed estimation of the a priori SNR.

Eventually, the reestimation and gain function form a pair of it-
erative algorithm. Theoretically, we can re-estimate the a priori SNR
iteratively to obtain a proper estimated gain. An investigation shows
that increasing iteration may improve some speech objective mea-
surement like SNR and modified Bark spectral distortion (MBSD).
Let IT denote the number of iteration with IT=1 denoting one-time
usage of reestimation, we propose a reestimation scheme for the a
priori SNR as follows

ξ̌k(l) = α̌
|ω(l)G̃(IT )

k (l − 1)Xk(l − 1)|2

ρ(l)ηn(k, l)
+ (1− α̌)(γ̆k(l)− 1)

(16)

ξ̃
(0)
k (l) =

{
ξ̌k(l), if ξ̌k(l) ≥ ς(l);
ς(l), otherwise

(17)

G̃
(τ−1)
k (l) = Gk(ξ̃

(τ−1)
k (l), γ̆k(l)), τ = 1, ..., IT. (18)
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Table 1. Performance evaluation for the LSA-MMSE in terms of WER
with different noise types in 10 dB using the sMBR decoder for the SWBD
databases

Estimation of spectral SNR White F16 Factory1
Noisy (i.e. without denoising) 57.3% 54.1% 53.4%

LSA:GMEM 40.4% 37.4% 39.8%

LSA:P1 37.5% 35.2% 37.6%

LSA:GMEM+P2 38.6% 36.0% 38.4%

LSA:P1+P2 36.3% 34.6% 36.3%

LSA:GMEM+P2+P3(IT=1) 34.8% 33.5% 36.1%

LSA:P1+P2+P3(IT=1) 33.9% 32.1% 35.2%

LSA:P1+P2+P3(IT=2) 33.8% 32.2% 35.5%

LSA:P1+P2+P3(IT=3) 34.1% 32.5% 35.7%

ξ̃
(τ)
k (l) = max

[ |G̃(τ−1)
k (l)Xk(l)|2

ρ(l)ηn(k, l)
, ς(l)

]
. (19)

Here, the smoothing factor α̌ is empirically set to 0.7. As a result,
the estimate of speech spectrum is given by

Ŝk(l) = ω(l)G̃
(IT )
k (l)Xk(l). (20)

Fig. 3 shows the flow chat of the proposed a priori SNR reestimation
scheme.

4. PERFORMANCE EVALUATION

4.1. Models for Speech Recognition

A state-of-the-art speech recognizer is setup by elaborating the lan-
guage modeling and acoustic modeling process as follows: we used
39 dimensional MFCC feature for speech recognition system, and
applied RASTA (relative spectra), CMVN, LDA, MLLT and fM-
LLR feature enhancement techniques. The DNN acoustic model is
trained by using 260k utterances (313 hr 23 min) from Switchboard-
1-LDC97S62 database with Kaldi toolkit [19]. With sMBR criterion
[1] [26], we obtained the DNN-HMM-sMBR model of five hidden
layers with 2048 neurons each hidden layer. 1,831 English sentences
with 21,395 words from the Switchboard corpus are selected as the
test dataset. On the other side, the language model is trained with
lexicon of 30,858 vocabulary size by using Part 1 of Fisher tran-
scripts that are equivalent to 700 hours of speech with SRILM toolkit
[27].

Different type of noise from NOISEX-92 [28] are added into
the test speech database to generate different group of noisy speech
database with different global SNRs. In this paper, we select three
types of noises, i.e. white noise, F16 noise and Factory1 noise.

Let P1 denote our proposed smoothing adaptation of the noise
control factor and weak spectral floor, P2 denote the proposed over-
suppression method, and P3 denote the proposed a priori SNR rees-
timation method.

To study the contributions of P1, P2 and P3, Table 1 shows com-
parison between the two adaptation methods in terms of the WER
performance of the sMBR decoder with different types of noise in
10 dB. It is obvious that the performance of LSA with P1 is consis-
tently better than the one with GMEM. However, the WER perfor-
mance of the reestimation with IT=1 and IT=2 is very similar, but
the one of IT=3 is apparently worse than that of IT=1. According
to the above observation, we adopt only one-time reestimation (i.e.
IT=1) in the next experiment.

The proposed speech enhancement algorithm is compared with
conventional spectral SNR estimation. The particular algorithms are
listed below: Wiener: Conventional Wiener filter [29], LSA: Con-
ventional LSA filter [15], LSA:CEP: LSA with cepstral a priori
SNR [8], LSA:GMEM: Gemello’s modified E-M LSA [7], ETSI:
ETSI baseline [30], LSA:PRO: LSA with P1+P2+P3(IT=1).
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Fig. 4. WER with DNN-sMBR decoder by applying different denois-
ing algorithms on the databases with different noise types (a) White
noise; (b) F16 noise; (c) Factory1 noise in different SNRs, i.e. 0 dB,
10 dB, 20 dB and 30 dB.

Fig. 4 shows the WER of the different speech enhancement sys-
tems with different noise conditions using the DNN-sMBR decoder.

We can see that our proposed LSA:PRO is almost consistently
better than LSA:CEP and LSA:GMEM. LSA is consistently better
than Wiener filter.

It is shown that the ETSI is a powerful noise reduction system,
especially in the low SNR situation. This advantage is very apparent
for F16 noise, WER from 85.7% drops to 58.9%, reaches 31.27%
improvement for 0 dB, although LSA:PRO makes a significant im-
provement and let WER dropped to 62.8%, with 26.7% improve-
ment. However, LSA:PRO outperforms ETSI in White and Fac-
tory1 noises with both low SNR and high SNR. And it wins most of
best accuracy totally. For the case of 10 dB Factory1 noise, it drops
WER from 53.4% to 35.2% to gain 34.1% improvement.

The experiment makes evident that our proposed scheme brings
positive and effective progress for the ASR denoising. Actually, we
have applied the same modification scheme on other spectral-domain
speech enhancement methods such as Wiener filtering [29], MMSE
[16], β-order MMSE [17] and masking-based β-order MMSE [18].
The improvement with the proposed modification on the above-
mentioned speech estimators for ASR is also very significant.

5. CONCLUSION

We have introduced a series of modification on LSA-MMSE speech
enhancement to mitigate the artifacts for speech recognition. In par-
ticular, we have proposed smoothing-adaptation scheme for control-
ling the processing noise power and mitigating the harmful artifacts
for weak speech signal, over-suppressing the residual noise, and re-
estimating a priori SNR. We analyzed the effectiveness of the pro-
posed modification scheme, and the experimental result shows that
the proposed scheme is significantly effective for the state-of-the-art
speech recognition.
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