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ABSTRACT

In this paper, a new approach to online Speech Activity Detection
(SAD) is proposed. This approach is designed for the use in a system
that carries out 24/7 transcription of radio/TV broadcasts contain-
ing a large amount of non-speech segments, such as advertisements
or music. To improve the robustness of detection, we adopt Deep
Neural Networks (DNNs) trained on artificially created mixtures of
speech and non-speech signals at desired levels of signal-to-noise
ratio (SNR). An integral part of our approach is an online decoder
based on Weighted Finite State Transducers (WFSTs); this decoder
smooths the output from DNN. The employed transduction model
is context-based, i.e., both speech and non-speech events are mod-
eled using sequences of states. The presented experimental results
show that our approach yields state-of-the-art results on standard-
ized QUT-NOISE-TIMIT data set for SAD and, at the same time, it
is capable of a) operating with low latency and b) reducing the com-
putational demands and error rate of the target transcription system.

Index Terms— deep neural networks, speech activity detection,
weighted finite state transducers, speech recognition

1. INTRODUCTION

Speech activity detection is a problem of identifying both speech and
non-speech segments in a sound recording. Over the years, various
SAD approaches have been proposed and an SAD module has usu-
ally formed an integral component of a signal pre-processing algo-
rithm in a wide range of tasks including, e.g., speech enhancement,
speaker identification and, of course, speech transcription. Most
of the existing SAD approaches are carried out in two subsequent
stages: feature extraction, and speech/non-speech classification.

In the former phase, the classic approaches for feature extrac-
tion utilize energy [1], zero crossing rate [2] or auto-correlation
function [3]. The family of more complex features, which have also
been successfully applied, include MFCCs [4, 5], multi-resolution
cochleagram features [6], multi-band long-term signal variability
features [7] or channel bottleneck features [8]. Note that in [9],
features based on the use of Deep Belief Networks (DBN) have
also been proposed. In practice, various combinations of individual
features are usually used to achieve the best possible results.

In the latter phase, various classification algorithms can be used,
such as Support Vector Machines (SVM) [10] or Gaussian Mixture
Models (GMMs) [11, 12]. In recent years, various DNN archi-
tectures started to be employed more and more frequently includ-
ing fully connected feed-forward DNNs [5], Convolutional Neural
Networks (CNNs) [13] or Recurrent Neural Networks (RNNs) [14,
15]. More complex approaches such as jointly trained DNNs [16]

or boosted DNNs [6] have also been proposed. Moreover, in [17]
a combination of DNN and CNN is used. The output from a given
classifier can also be smoothed to further improve the accuracy of
the detection. Recently, various techniques such as the Viterbi de-
coder [5, 18] or WFSTs [19] have been applied for this purpose.

Most of the aforementioned works aim primarily at offline ap-
plications, because applying SAD in an online environment brings
further restrictions on the system, such as low computational de-
mands and latency. The approaches developed namely for the online
task include, for example, conditional random fields [18] or accurate
endpointing with expected pause duration [20]. Another approach
in [21] utilizes short-term features.

The goal of our efforts was to develop a SAD approach suitable
for a system that is deployed for online 24/7 transcription of more
than 80 TV and radio stations in several Slavic languages. From a
speech recognition point of view, this type of input data is specific
by containing a large amount of non-speech parts such as songs or
advertisements. This applies namely to some local radio stations,
whose broadcasts may contain only a few percent of speech seg-
ments. In this case, the utilization of an SAD module should reduce
the computation demands on the transcription system dramatically.

An SAD module suitable for our target task should a) operate
at a low level of Real-Time Factor (RTF), b) have a low latency,
and c) reduce the Word Error Rate (WER) of transcription. To meet
all these requirements at once, a new approach is proposed in the
present paper. It adopts a DNN classifier that is trained on a data set
created by mixing clean speech utterances with non-speech record-
ings at various desired levels of SNR. The output from DNN is then
smoothed using a decoder based on WFSTs. To ensure high quality
and accuracy of the detection, the employed transduction model is
context-based, i.e., both speech and non-speech events are modeled
as sequences of three consecutive states.

2. METRICS USED FOR EVALUATION

In this paper, three different overall accuracy metrics were used for
evaluation including Frame Error Rate (FER), Miss Rate (MR) and
False Alarm Rate (FAR) [5].

Moreover, the F-measure was utilized to evaluate the quality of
the change-point detection between speech/non-speech events given
the alignment between detected and reference boundaries [22].
Given the correctly detected boundaries (hits), it is also possible to
calculate an error value for each hit (in seconds) and sort all the
hits according to these values in ascending order. In this paper, the
measure δ2/3 is utilized, which expresses (in seconds) the maximal
error of the alignment for first two-thirds of the sorted (best) hits.
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3. THE PROPOSED SAD APPROACH

The SAD approach presented in this paper was developed in a series
of experiments described in the following subsections.

3.1. Data Used for Development

The data used for development and evaluation consisted of 6 hours
of TV and radio recordings in several Slavic languages, e.g., Czech,
Slovak, Polish or Russian. It contained not only clean speech seg-
ments but also segments with music, jingles and/or advertisements.
Annotation of this data was created within two consecutive phases:
speech/non-speech labels were produced automatically using the
baseline DNN-based SAD approach (see the next section) at first,
and then corrected by human annotators. In total, 70% of all frames
were marked as containing speech.

3.2. Baseline DNN-Based Approach

The baseline approach employed a deep neural network with a bi-
nary output (i.e., without any smoothing) which was trained using
the torch library1. The data for DNN training was composed of 7
hours of various non-speech events and/or noises, 30 hours of mu-
sic recordings and 30 hours of clean speech utterances belonging to
several Slavic languages and English.

The DNN had 5 hidden layers, each consisting of 128 neurons.
The ReLU activation function and mini-batches of size 1024 were
used within 10 epochs of training. The learning rate was set to 0.08.
39-dimensional log filter banks were used as features. The input vec-
tor for DNN had a length of 51 and was formed by concatenating 25
previous frames, the current frame, and 25 following frames. Local
normalization was performed within one-second windows.

The accuracy of the baseline approach is summarized in Table 1
(see its first row). It is evident that it missed approximately 4%
of speech segments. This fact affects the accuracy of the speech
transcription system negatively, as the segments incorrectly marked
as non-speech are not transcribed. Another problem of the base-
line detector is the time precision of the change-point detection: the
achieved value of δ2/3 is 0.42 s. This is also due to the fact that it
is sometimes hard even for human annotators to determine the exact
frame where a state change occurs. The baseline detector also pro-
duced a high number of false non-speech segments with a very short
duration of one or two frames.

3.3. Smoothing the Output from DNN

As mentioned in the previous section, the baseline detector classified
every input frame independently. On the other hand, every speech or
non-speech segment usually lasts for at least several frames. There-
fore, our next efforts were focused on smoothing the output from
DNN. For this purpose, weighted finite state transducers were uti-
lized using the OpenFst library2.

The resulting scheme consists of two transducers (see Fig. 1).
The first models the input signal. The other one is the transduction
model and represents the smoothing algorithm. It consists of three
states. The first state, denoted by 0, is the initial state. The transitions
between states 1 and 2 emit the speech/non-speech labels and are
penalized by penalty factors P1 a P2, respectively. Their values (500
and 500) were determined in several experiments not presented in
this paper. Note that these values were tuned on different data set.

1http://torch.ch
2http://www.openfst.org/twiki/bin/view/FST/WebHome
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Fig. 1. The transducers representing the input signal (upper) and the
basic smoothing model without any context (lower).

Given the two described transducers, the decoding process is
performed using on-the-fly composition of the transduction and the
input model of unknown size. This is possible since the input is con-
sidered to be a linear-topology, unweighted, epsilon-free acceptor.
After each composition step, the shortest-path (considering tropical
semi-ring) determined in the resulting model is compared with all
other alternative hypotheses. When a common path is found among
these hypotheses (i.e., with the same output label), the correspond-
ing concatenated output labels are marked as the final fixed output.
Since the rest of the best path is not known with certainty, it is de-
noted as a temporary output (i.e., it can be further refined).

The results obtained with the aid of the DNN-based approach
with smoothing are summarized in the second row of Table 1. They
show an overall significant boost in accuracy. For example, MR was
reduced from 3.7% to 2.2% and the value of δ2/3 from 0.42 s to
0.27 s.

3.4. Using Artificial Training Data

The level of MR yielded so far, i.e., around 2%, still leads to a small
increase in WER of a transcription system (e.g., from 13% to 14%),
as the speech frames incorrectly classified as non-speech are omit-
ted from transcription. The analysis we performed showed that the
detector specifically misclassified the speech segments with back-
ground noise. The reason for this behavior is that the speech data
used for DNN training so far were recorded in clean conditions (they
served originally for training of an acoustic model for speech recog-
nition systems).

Hence in the next step, the goal was to employ training data
containing non-speech events, such as music or jingles in the back-
ground. The lack of such annotated data forced us to create an ar-
tificial source by mixing 30 hours of clean speech with non-speech
recordings. For this purpose, a larger set of non-speech recordings
of a total length of 100 hours was prepared first. After that, every
speech recording was mixed with a randomly selected non-speech
recording from the prepared set. Note that every non-speech record-
ing used for mixing had to have the same or longer duration than
the given input speech recording (the selected non-speech record-
ing was trimmed to match the length of the speech recording) and
its volume was increased or decreased to match the desired level of
SNR (which was also selected randomly from an interval between
−30 dB and 50 dB).

The labeling of this artificial data was carried out automatically:
when SNR of the recording was higher than a defined threshold of
0 dB, the recording was marked as containing speech. In the opposite
case, the recording was labeled as non-speech.

The results after using only these 30 hours of mixed training
data are shown in the third row of Table 1. It is evident that this
approach led to an increase in F-measure and a significant reduction
in MR from 2.2% to 0.3%. Unfortunately, these improvements are
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Table 1. Summarized results of individual SAD approaches described in Sect. 3.
Approach FER MR FAR F-measure δ2/3

Baseline DNN-based 4.7% 3.7% 7.1% 0.3% 0.42 s
+ Basic smoothing 2.9% 2.2% 4.7% 28.5% 0.27 s

+ Artificial training data with noise 3.1% 0.3% 10.1% 41.3% 0.34 s
Modified artificial training data 2.4% 0.5% 7.2% 52.7% 0.26 s+ Context-based smoothing

all accompanied by an increase in FAR and, even more importantly,
an increase in δ2/3 from 0.27 s to 0.34 s. This negative fact motivated
us to further improve the smoothing algorithm.

3.5. Improved Context-Based Smoothing

The scheme of the improved smoothing transducer that utilizes con-
text is depicted in Fig. 2. In this case, both the speech and non-
speech events are represented as sequences of three states, where
the first and third states (the outer states) model the context. Simi-
larly to smoothing without any context, the penalties are defined just
for transitions between the speech and non-speech events, i.e., for
transition a) from the end state of speech (end S) to the start state
of non-speech (start NS), and b) from the end state of non-speech
(end NS) to the start state of speech (start S).

To prepare training data containing transitions between speech
and non-speech events, the data set from Sect. 3.4 was modified.
At first, two recordings were chosen randomly from the artificial
training set; one speech and one non-speech. After that, these two
recordings were joined in a random order. The resulting recording
then contained one of the two possible transitions (i.e., from speech
to non-speech or from non-speech to speech) and was annotated au-
tomatically as follows:

1. The number of transition frames was derived from the input
feature context window (25-1-25).

2. Only the 50 frames at the inner boundary of the two joined
recordings were annotated as transitional, i.e., using 25 labels
stop S followed by 25 labels start NS or 25 labels stop NS
followed by 25 labels start S.

3. All other frames were marked as either speech or non-speech.

The results of the experiment with the context-based smoothing
(see the fourth row of Table 1) show that this approach addresses the
issue of an increase in δ2/3, which has emerged due to the use of
the artificial training data (see the third row of Table 1). The value
of δ2/3 was reduced from 0.34 s to 0.27 s. At the same time, a
significant decrease in FAR, an increase in F-measure, and only a
slight decrease in MR by 0.2% was achieved when compared to the
previous experiment.

3.6. Evaluation on QUT-NOISE-TIMIT Corpus

The evaluation on QUT-NOISE-TIMIT corpus [23] shows the per-
formance of the proposed approach in comparison with five ap-
proaches already presented in [23] and two techniques reaching the
state-of-the-art results [24, 12]. The five approaches were: stan-
dardized VAD system ITU-T G.729 Annex B [25], standardized
advanced front-end ETSI [26], Sohn’s likelihood ratio test [27],
Ramirez’s long-term spectral divergence (LTSD) [28] and GMM
based approach with use of MFCC features [23]. The latter two
techniques were voice activity detection using subband noncircular-
ity (SNC) [24] and complete-linkage clustering (CLC) for VAD [12].

The QUT-NOISE-TIMIT corpus was designed for training and
evaluation of SAD systems in various noise scenarios and SNR lev-
els. The data set combines clean speech from TIMIT corpus [29]
with background noise recordings from QUT-NOISE data set [23].
The QUT-NOISE data set contains five types of background noises
(scenarios: cafe, home, street, car, reverb) each from two different
locations. Total amount of 600 hours were compiled and divided into
two groups (A, B). Each group contains recordings from all scenar-
ios in various SNR levels.

The training and testing protocols recommended for QUT-
NOISE-TIMIT corpus presented in [23] were followed. The train-
ing was done with prior knowledge of target environment SNR;
low noise (10, 15 dB), medium noise (0, 5 dB) and high noise
(−10, −5 dB). However no prior knowledge of target environment
scenario was utilized during the training phase. For each target
SNR, group A was used for training and group B for testing and
vice-versa. The proposed SAD module was trained as described in
Sect. 3 with the exception of the use of artificial training data.

Figure 3 presents the comparison of the proposed SAD mod-
ule and above introduced SAD approaches at three different noise
levels: low, medium and high. In addition to MR and FAR, Half-
Total Error Rate (HTER) was also evaluated. It is defined as equal-
weighted average of MR and FAR. The obtained results show that
our solution outperforms other SAD systems in low and medium
noise conditions. The absolute reduction in HTER is over 2% over
the previously best complete-linkage clustering approach. However,
the HTER is approximately 2% worse in high noise conditions. The
rest of the techniques are still being outperformed by a fair margin.

Our solution thus achieve state-of-the-art results in both low and
medium noise conditions while staying competitive in high noise
conditions on QUT-NOISE-TIMIT corpus.

4. RESULTS OF THE PROPOSED SAD APPROACH IN A
REAL SPEECH TRANSCRIPTION SYSTEM

Given the findings and results from all previous experiments, the
resulting SAD approach with the context-based smoothing was eval-
uated in a real speech-transcription system.

For this purpose, two test sets of Czech broadcasts were uti-
lized. The first set represents 4 hours (22204 words) recorded from a
Czech live news TV channel. Approximately 60% of its content con-
sisted of speech segments. The length of the other set was 8 hours,
it contained 7212 words, and speech frames formed only 10% of its
content. This set represents broadcast of a Czech local radio station.

The transcription system employed an acoustic model based on
a Hidden Markov Model - Deep Neural Network (HMM-DNN) hy-
brid architecture [30], where the baseline Gaussian Mixture Model
(GMM) is trained as context-dependent, speaker-independent and
contains 3886 physical states. The data for training of this model
contained 270 hours of speech recordings. The parameters used for
the DNN training were as follows: 5 hidden layers with a decreas-
ing number of neurons per hidden layer (1024-1024-768-768-512),
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Fig. 2. The scheme of the WFST representing the context-based smoothing model.
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Fig. 3. Comparison of various SAD systems across QUT-NOISE-TIMIT corpus. HTER is defined as equal-weighted average of MR and
FAR. The percentage contribution of MR and FAR to HTER bars is displayed by darker and lighter shades, respectively.

ReLU activation function, mini-batches of size 1024, 35 training
epochs, learning rate 0.08. For signal parameterization, log filter
banks were used with context windows of 5-1-5 and local normal-
ization was employed within one-second windows.

The linguistic part of the system was composed of a lexicon and
a language model. The lexicon contained 550k entries with mul-
tiple pronunciation variants and the language model was based on
N-grams. For practical reasons (mainly with respect to the very large
vocabulary size), the system used bigrams. However, 20 percent of
all word-pairs actually include sequences containing three or more
words, as the lexicon contains 4k multi-word collocations. The un-
seen bigrams are backed-off by Kneser-Ney smoothing.

4.1. Experimental Results

Within the performed experiments, both test sets were transcribed a)
with and b) without the use of the SAD module. The obtained results
are presented in Table 2, which contains values of Word Error Rate
(WER) and Correctness (Corr) to show the transcription accuracy of
the system. To measure computational demands with and without
SAD, values of RTF (the ratio of the processing time to recording
length) are also presented.

Table 2. Evaluation of the proposed SAD approach in a real speech
transcription system.

Test set live news TV channel local radio station
SAD module Yes No Yes No

WER [%] 12.4 12.7 14.0 17.9
Corr [%] 89.7 89.7 88.5 88.4

RTF 0.42 0.77 0.08 0.83

The obtained results indicate that the utilization of the proposed
SAD approach was advantageous on both test sets. The yielded Corr
and WER show that the SAD module limited the insertions coming
from the non-speech parts and omitted hardly any speech parts.

The SAD module allowed the transcription system to operate
with improved accuracy and, at the same time, RTF was almost two
times, and more than ten times lower for the first and second test set,
respectively. Of course, the reason for this difference is that the data
in the second set contained fewer speech segments. Note that RTF of
the SAD module itself is around 0.01 and all presented RTF values
were measured using processor Intel Core i7-3770K @ 3.50GHz.

The transcription system complemented with SAD can also be
utilized for online transcription without any major delay, because its
latency is around 2 seconds.

5. CONCLUSIONS

In this paper, a new SAD approach suitable in offline as well as on-
line speech transcription systems is proposed. The approach utilizes

• a DNN-based classifier;

• training data created artificially by mixing speech and non-
speech recordings at various levels of SNR;

• a WFST-based decoder that smooths the output from DNN
using a context-based model in which both the speech and
non-speech events are represented as sequences of states.

The application of this approach to a real speech-recognition
system leads to a) a slight decrease in WER, and b) significant re-
duction in RTF of the whole transcription process. The latter advan-
tage is namely important for 24/7 monitoring of streams containing
a large proportion of music (e.g., local radio stations), where the
computational demands on the transcription system can be reduced
dramatically.
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