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ABSTRACT
In this paper, we propose a speaker segmentation method for
meeting audio based on i-vector. The motivation is to uti-
lize the Total Variability (TV) framework as a feature extrac-
tor and to exploit the potential of modeling the speaker and
channel variabilities for speaker segmentation in meetings. A
distance-based segmentation method is designed with the co-
sine distance. A sliding window with variable length searches
for speaker turns, through the distance between the i-vectors
extracted from two segments with the same size. The exper-
iments are conducted on the AMI Meeting Corpus, covering
several conversation scenarios. For the training data of the
UBM and TV matrix, 5 conversations from AMI Meeting
Corpus are sampled. Other 10 conversations from AMI Meet-
ing Corpus to compose the test data. The experiments show
an improvement in the MDR and FAR curves compared with
the FixSlid approach with different distance metrics, and for
most of the operating points when compared with the classical
BIC based WinGrow. The proposed method has on average a
better computational performance, improving in 61.5% com-
pared with the XBIC based FixSlid, and improving in 86.7%
compared with the BIC based WinGrow.

Index Terms— speaker diarization, speaker segmenta-
tion, i-vector, total variability, meeting conversations

1. INTRODUCTION

Speaker Diarization is the process of splitting an audio stream
into homogeneous segments that belongs to each participating
speaker. Speaker segmentation is the task of determining the
time instants when a transition from one speaker to another
occurs, called speaker turns or speaker change points. The
main challenge of this task is to form homogeneous speaker
segments (only one speaker per segment) [1, 2].

Most of speaker segmentation algorithms relies on a slid-
ing window and a distance metric to evaluate whether two
segments belongs to the same speaker. This type of algo-
rithms are categorized as distance-based segmentation [3].
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This category assumes no a priori information about the
speakers in the audio stream. The change points are localized
by a sliding window, that can have a fix length (FixSlid ap-
proach [4,5]) or a variable length (WinGrow approach [6–8]).
Commonly, MFCCs are extracted from the window [2, 9],
and a distance between two segments of the features vectors
is calculated. A speaker change point is detected when a
distance is above a threshold. The Bayesian Information Cri-
terion (BIC) is the most popular distance metric used for this
task [2]. Other examples of popular distance metrics are the
symmetric Kullback-Leibler (KL2) [4] and the Generalized
Likelihood Ratio (GLR) [10].

In speaker recognition, factor analysis methods have
proved to be very effective, particularly to telephone speech
[11]. These methods are applied to speaker diarization, for
telephone conversations [12–15] and broadcast news scenar-
ios [16, 17]. Castaldo et al. [12] introduce the eigenvoices
as speaker factor to pre-segment the speech, in a stream seg-
mentation system for multi-speaker telephone conversations.
In Desplanques et. al [16], eigenvoices are also proposed for
speaker segmentation, in the context of broadcast news, utiliz-
ing single-pass and two-pass algorithms. In Shum et. al [14]
and Senoussaoui et. al [15], the i-vector as speaker factors is
proposed for speaker clustering in telephone conversations.

This work introduces the i-vector for the WinGrow seg-
mentation approach. The i-vectors are extracted through a
UBM and a Total Variability (TV) matrix trained for meetings
domain. The segmentation relies on detecting change points
with a sliding window with variable length. The i-vectors are
extracted from two segments with the same length and the
cosine distance is calculated between i-vectors. A threshold
value is set to decide if there is a speaker change point be-
tween the segments boundaries. The UBM and the TV matrix
are modeled using the AMI Meeting Corpus [18], sampling
meeting audio streams. The experiments are conducted on
the AMI Meeting Corpus, with different audio streams than
the streams utilized for training of the UBM and TV matrix.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief introduction to the total variability mod-
eling. Section 3 describes the baseline segmentation methods
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evaluated in this work. In Section 4, we detail the proposed
speaker segmentation method utilizing i-vector. The experi-
mental results are shown in Section 5. Finally, conclusions
and discussions in relation to prior work are given in Section
6.

2. TOTAL VARIABILITY MODELING

In Dehak et al. [11], the total variability modeling is intro-
duced, defining a single space containing both speaker and
channel variabilities simultaneously. The total variability ma-
trix defines this single space, containing the eigenvectors with
the largest eigenvalues of the total variability covariance ma-
trix. It ignores the distinction between the effects of speaker
and channel in the Gaussian Mixtures Model (GMM) super-
vector space. A GMM supervector M is formed by concate-
nating the means of each mixture component. Given a speaker
utterance, the speaker- and channel-dependent supervectorM
is written as,

M = m+ Tw (1)

where m is the speaker- and channel-independent supervec-
tor, taken from the Universal Background Model (UBM) su-
pervector, T is a rectangular matrix of low rank, representing
the total variability space, andw is a random vector with stan-
dard normal distribution. The vector w is called i-vector and
its components are the total factors.

3. BASELINE SEGMENTATION METHODS

The proposed method is compared with the classical WinGrow
approach [7], utilizing the BIC distance, and the FixSlid ap-
proaches, utilizing the distances: GLR [19], KL2 [4] and
XBIC [8].

3.1. Window Growing Segmentation Approach

In the Window Growing approach (WinGrow) [7], the multi-
ple change points detection in an audio stream is done with
a defined distance metric, a criterion λ, or a threshold value
and a sliding window with variable length, to sequentially de-
tect one possible change point inside the window. The length
of the window grows Ng vectors if no change is present. To
detected one change point, a distance curve is calculated iter-
atively, splitting the window into two partitions. The length of
these partitions is changed for each iteration, the length of the
left partition starts with Nmin vectors and increases over the
right partition until the right partition length becomes Nmin.
The distance between partitions is calculated for each itera-
tion and the defined criterion is applied to the curve, to de-
tect the location of a possible speaker change. This approach
has a high computation cost if the audio has long homoge-
neous speech segments and no upper limit is set to the window
length. In [7], a upper limit lengthNmax together a slid length

NS parameter shows an efficiently computation performance
and no deterioration in the speaker segmentation results. The
algorithm presented in [7] is adopted in our method.

3.2. Fixed and Sliding Window Approach

The FixSlid approach detects multiple speaker change points
with a defined distance metric, a criterion, or a threshold value
and a sliding window with fixed length. The window length
ND is divided in two adjacent segments to calculate a distance
value between them. The slide lengthNSlid is defined to over-
lap the window and to calculate several distances across the
audio stream. An analysis window is defined to find the peaks
in the curve that are above the threshold, or are selected as
candidates by a defined criterion. The length of the analysis
window NA is defined to evaluate a local set of points under
the criterion or threshold and to find a speaker change point.

The criterion proposed in Delacourt et. al [19] is utilized
in the baseline method. The absolute differences between a
local peak value and the local lowest values on the left and
right positions are computed. These differences are compared
with the standard deviation of the curve multiplied by an ad-
justable parameter α. A relevant peak is detected if its value
meets this criterion.

4. I-VECTOR BASED SPEAKER SEGMENTATION

In the distance curve computation, the low-level features vec-
tors from the two partitions are modeled by using a single
Gaussian density. As the partition length decreases, the voice
patterns can become diverse due to the differences in their
acoustic contents. The modeling inherently rely on averaging
out the phonetic differences between partitions. Therefore,
when the spoken material is from the same speaker, the par-
titions being compared can appear dissimilar, which can lead
to an increased number of false alarms.

The i-vector as speaker factors relies on modeling the
specific speaker features, considering the variability from its
voice, and the channel effect present in the speech acquisi-
tion. Given an window analysis, the i-vectors are extracted
from two partitions with same size. Then, a distance value is
calculated between i-vectors. It is assumed that each partition
has sufficient information in the i-vector representation. If the
analysed spoken content comes from the same speaker, the
extracted i-vectors tends to be similar, even with the variation
of the phonetic acoustic information.

The cosine distance is utilized in the segmentation task, to
measure the dissimilarity between the i-vectors:

cos dist(w1, w2) = 1− 〈w1, w2〉
‖w1‖ · ‖w2‖

(2)

this distance has a normalized scale in the range 0 to 2, being
easier to set a threshold θ. With no amplitude information,
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this range appears independent from the audio application or
audio data set.

This approach allows the detection of multiple speaker
change points in a continuous speech segment. The analysis
window has an initial length ofNini low-level feature vectors.
The speaker change candidate is in the middle of the window.
The cosine distance is calculated between adjacent segments,
corresponding to the left and right middle of the window. If
the distance is above the threshold θ, the speaker change can-
didate is a change point. Then, the window is repositioned to
this point and its length is reset to Nini. If no change point
is detected, the window length grows Ng features vector and
the detection process starts again. If the length reaches the
upper limit Nmax, the window slides NS features vector un-
til a change point is detected. The algorithm stops when the
window reaches the end of the signal. Fig. 1 shows how the
proposed i-vector based WinGrow detects multiple speaker
change points.

Fig. 1. Multiple speaker change points detection utilizing an
i-vector based WinGrow approach. The cosine distance is cal-
culated between i-vectors extracted from two window parti-
tions with same length.

5. EXPERIMENTS

5.1. Data

The AMI Meeting Corpus [18] is an open access corpora with
100 hours of meeting recordings. For the experiments, we
obtained 15 conversation having different speaker for all the
samples. We divide the conversations into training and test
data sets. In the training data, 5 conversations are sampled
for both UBM and TV matrix modeling. The total of speak-
ers for all the conversations is 10, and total duration for all
conversations is approximately 4 hours. The evaluation data
set is composed by 10 conversations. The conversations have

between 4 and 5 speakers. The total duration of all conver-
sations is approximately 6 hours and 24 minutes. There is a
total of 6916 speaker change points in these conversations.

5.2. Speech Activity Detection

Before parametrization, a Speech Activity Detection (SAD)
method based on energy is applied to extract all non speech
segments longer than 0.25 second. In addition, speech seg-
ments shorter than 0.5 second are also discarded.

5.3. Evaluation measures

Given the inconsistencies in the labelling process and the un-
certainty of when a speaker change precisely occur, a non-
scoring collar around every reference speaker change is de-
fined in evaluating the performance of the systems. In this
work, a 500 ms collar is used to account for such issues.

Two types of errors are computed: False Alarm Rate
(FAR) and Miss Detection Rate (MDR) [2, 9]. The MDR
refers to the percentage of reference speaker changes that
were not detected by the system. The FAR refers to the per-
centage of detected speaker changes that are not present in
the audio.

The MDR and FAR from different operating points are
used to compute the Receive Operation Characteristics (ROC)
curve. The Area Under the Curve (AUC) is also used as a
evaluation measure. In our experiments, we choose two error
rates to compute the ROC curve, therefore, the best AUC is
the most closely to 0.

5.4. Baseline Methods Configuration

For all baseline methods we extract 12 MFCCs from each
cluster, with 32 ms frame length for every 10 ms.

For the BIC based WinGrow the following configuration
is set: Nini, Ng , Nmax and NS are set to 2, 1, 10 and 2
seconds, respectively. Nmin is set to 20 frames of MFCC. We
evaluate 10 values of λ, in a range from 0.5 to 5.5 in intervals
of 0.5.

For the FixSlid approaches, the following configuration
is set: ND, NSlid and NA are set to 2, 0.2 and 2 seconds,
respectively. We evaluate 10 values of α, in a range from 0.1
to 1.9 in intervals of 0.1.

5.5. Proposed Method Configuration

From each speaker cluster in the training data we extract 12
MFCCs, with a frame length of 32 ms for every 10 ms. The
UBM is trained with all features vectors. The number of
Gaussian components is set to 8. The matrix T is trained
considering the variability intra-cluster. The rank of both T
and the i-vector is set to 100.
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Table 1. The Area Under the Curve (AUC) for the ROC
curves of each segmentation method in the test data set.

Methods AUC

WinGrow i-vector
(COSINE) 46.57

WinGrow MFCC
(BIC) 47.41

FixSlid MFCC
(KL2) 52.07

FixSlid MFCC
(GLR) 52.01

FixSlid MFCC
(XBIC) 52.29

Table 2. Computational performances of the evaluated meth-
ods, measured in seconds. The mean and standard deviation
(dev) are computed for the processing time for 10 runs of ex-
periments.

Methods mean (secs) dev

WinGrow i-vector
(COSINE) 2.64 2.44

WinGrow MFCC
(BIC) 18.46 16.31

FixSlid MFCC
(KL2) 16.18 20.29

FixSlid MFCC
(GLR) 10.21 12.91

FixSlid MFCC
(XBIC) 6.85 8.85

For the proposed approach, the WinGrow configuration
follows the baseline using the BIC based WinGrow. We eval-
uate 10 values of θ, in a range from 0.1 to 1.9 in intervals of
0.1.

5.6. Speaker Segmentation Results

Fig. 2 shows the ROC curves for all evaluated methods. The
points of the curve are obtained varying the adjustable param-
eters or threshold value. Table 1 shows the AUC for the ROC
curves presented in Fig. 2. The ROC curves show that the pro-
posed method outperforms the FixSlid approaches evaluated,
in both MDR and FAR. The proposed method outperforms
the BIC based WinGrow in some operating points. Table 1,
the proposed method yields the lowest AUC.

Table 2 presents the average computational performance
for 10 runs of experiments in the test data set for each eval-
uated method. The proposed method have the best average
computation performance among the baseline methods, with
an improvement of 61.5% compared to the FixSlid approach
with the XBIC distance, and in 86.7% compared to the BIC
based WinGrow.

Fig. 2. The MDR x FAR curves of the evaluated methods.
Each point is obtained varying the threshold value or the ad-
justable parameters.

6. CONCLUSION

This work presented an i-vector based WinGrow approach for
speaker segmentation in meeting audio, using a cosine dis-
tance. In the experiments using the AMI Meeting Corpus, the
i-vector and the cosine distance demonstrate a higher discrim-
ination capacity among different speakers compared with the
Gaussian distributions modeled from MFCC using the dis-
tances BIC, GLR, KL2 and XBIC. The results showed that
the proposed method obtains better MDR and FAR for most
of operating points compared with the classical BIC based
WinGrow, and outperforms the classical FixSlid approaches
with the distances GLR, KL2 and XBIC. The AUC of the pro-
posed segmentation method is less than all baseline methods.
The proposed method has a superior average computational
performance.

As future work, we will investigate the results with more
data for the UBM and T matrix modeling, and varying the
rank of both T and i-vector. More experiments are needed
in different application domains, such as telephone conversa-
tions and broadcast news.
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