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ABSTRACT

Recently, a hybrid deep neural network/i-vector framework has been
proved effective for speaker verification, where the DNN trained
to predict tied-triphone states (senones) is used to produce frame
alignments for sufficient statistics extraction. In this work, in order
to better understand the impact of different phonetic precision to
speaker verification tasks, three levels of phonetic granularity are
evaluated when doing frame alignments, which are tied-triphone
state, monophone state and monophone. And the distribution of the
features associated to a given phonetic unit is further modeled with
multiple Gaussians rather than a single Gaussian. We also propose
a fast and efficient way to generate phonetic units of different
granularity by tying DNN’s outputs according to the clustering
results based on DNN derived senone embeddings. Experiments are
carried out on the NIST SRE 2008 female tasks. Results show that
using DNNs with less precise phonetic units and more Gaussians
per phonetic unit for speaker modeling generalize better to different
speaker verification tasks.

Index Terms— speaker verification, deep neural networks,
phonetic granularity

1. INTRODUCTION

Over recent years, many approaches based on Gaussian Mixture
Model-Universal Background Model (GMM-UBM) have been pro-
posed to improve the performance of speaker verification, among
which i-vector has become a dominant approach in state-of-the-art
speaker verification systems [1, 2, 3, 4]. In the i-vector paradigm,
a sequence of acoustic feature vectors are mapped into a low-
dimensional space and each utterance can be represented as a fixed-
length vector called i-vector in this subspace. After the extraction of
i-vectors, probabilistic linear discriminant analysis (PLDA) can then
be applied as the backend classifier to get the final verification scores
[5, 6, 7].

More recently, a hybrid framework which combines deep neural
networks (DNN) in automatic speech recognition (ASR) with the
conventional i-vector model has shown promising results for speaker
verification [8, 9]. In their work, each output of the DNN is treated
as a single Gaussian in the UBM and the posterior probability of the
DNN output is then used as the occupation probability for sufficient
statistics extraction [8]. Many later work based on similar concept of
combining phonetically-related models have also been proved very
effective for speaker verification [10, 11, 12].

In fact, senone is the basic phonetic unit for context-dependent
triphone acoustic modeling in ASR and it performs much better
than context-independent phonetic units [13, 14]. However, as for
text-independent speaker verification, using such precise phonetic
units for frame alignments might lead to severe phonetic content
mismatch problem, especially on short-utterance and multilingual
tasks. In addition, many previous works try to exploit phonetic
information for speaker modeling by defining a set of phonetically-
related GMMs rather than a single UBM [15, 16, 17, 18]. And it
seems more necessary to investigate using GMMs for phonetic units
modeling under the DNN/i-vector framework, where the DNN is dis-
criminatively trained and the distribution of the features associated
with each DNN’s output might be much more complex.

Based on the above two problems, in this paper we analyze using
DNNs with phonetic units of different granularity and using different
number of Gaussian per phonetic unit for speaker modeling, trying
to better understand the impact of different phonetic and acoustic
precision to speaker verification tasks. Three levels of phonet-
ic granularity are evaluated in this work which are tied-triphone
state, monophone state and monophone, from context-dependent
to context-independent. In addition, we also propose a fast and
efficient way of generating phonetic units of different granularity
by tying the DNN’s outputs according to the clustering results based
on senone embeddings. Here senone embedding is represented as
the concatenation of DNN’s weight vectors and biases. It should be
noticed that the work in [19] has also explored the impact of different
phonetic precision to speaker verification with senone tying. In
their work, they represent each senone output as a single Gaussian
and try to cluster senones by minimizing the likelihood loss of the
UBM training data given the merge of similar Gaussians. Compared
with their work, the senone tying method we propose in this paper
is much more efficient and no additional training data are needed
for senone clustering. We evaluate the proposed approaches on
three kinds of tasks of NIST SRE 2008 female data set, which are
English long utterance, multilingual long utterance, English short
utterance. Experimental results show that systems using DNNs with
less precise phonetic units and using more Gaussians to model the
distribution of each phonetic unit generalize better to different kinds
of speaker verification tasks.

The rest of this paper is organized as follows. Section 2 gives
the DNN based i-vector framework. Section 3 presents the speaker
modeling method at different levels of phonetic granularity. Section
4 introduces the senone tying method based on senone embeddings.
Experimental setup and results are given in Section 5. Conclusions
are presented in Section 6.
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2. THE DNN BASED I-VECTOR FRAMEWORK

Given a speech segment, the following sufficient statistics (Baum-
Welch statistics) which are used for i-vector subspace training and
i-vector extraction need to be calculated using UBM

Nc =
∑
t

p(c|xt, λ) (1)

Fc =
∑
t

p(c|xt, λ)xt (2)

Sc =
∑
t

p(c|xt, λ)xtxt
T (3)

whereNc, Fc and Sc are the zero-order, first-order and second-order
statistics with respect to c-th Gaussian. λ represents the UBM model
and λc = {πc,µc,Σc}, c = 1, 2, ..., C. xt is the acoustic feature.
p(c|xt, λ) is the alignment of xt calculated as the posteriors of the
c-th Gaussian component.

By treating each senone (tied-triphone state) output of the DNN
as a single Gaussian in the UBM, Lei [8] and Kenny [9] propose
to use the senone posteriors generated by the DNN to do the frame
alignments as a replacement of the UBM

p(c|xt, λ)←− p(s|xt, τ) (4)

where τ represents the DNN model. s is the index of the DNN’s
output nodes which correspond to senones. In this way, the
text-independent speaker verification task has been converted as a
phonetically-dependent (senone-dependent) one.

3. SPEAKER MODELING AT DIFFERENT LEVELS OF
PHONETIC GRANULARITY

The single Gaussian assumption in the DNN/i-vector framework
might not be so appropriate since the DNN is discriminatively
trained and the distribution of the features associated with each
DNN’s output could be much more complex, not to mention that the
features for frame alignment and statistics calculation are usually
completely different [8]. In order to better describe the acoustic
space, we use mutiple Gaussians rather than a single Gaussian to
represent each phonetic unit’s distribution when building the DNN/i-
vector system. The GMM corresponding to each phonetic unit could
be estimated as follows in an iterative way as in the traditional EM
algorithm

γc,s,t = p(c|xt, λs)p(s|xt, τ) (5)

Nc,s =
∑
t

γc,s,t (6)

πc,s =
Nc,s∑
c

Nc,s
(7)

µc,s =

∑
t

γc,s,txt

Nc,s

(8)

Σc,s =

∑
t

γc,s,txtxt
T

Nc,s

− µc,sµ
T
c,s (9)

where γc,s,t is the posterior probability corresponding to the c-th
Gaussian of phonetic unit s given acoustic feature xt. Now each
phonetic unit is represented by a GMM model λs and λc,s =
{πc,s,µc,s,Σc,s}.
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Fig. 1. The visualization of monophone states embeddings using t-
SNE toolkit. The nodes of the same color belong to the same phone.

As for i-vector modeling, we first extract sufficient statistics
based on each phonetic unit’s GMM. Then these sufficient statistics
are concatenated for i-vector subspace training and i-vector extrac-
tion. And the posterior probability corresponding to each Gaussian
is modified as

p(c, s|xt)←− p(c|xt, λs)p(s|xt, τ) (10)

It should be noticed that this is a soft alignment process. In fact,
some other works [16, 18] have also investigated using GMM to
model each phonetic unit for speaker verification but they use a hard
alignment and usually they use an ASR decoding system to produce
frame alignments.

4. SENONE TYING WITH
DNN DERIVED EMBEDDINGS

In fact, different GMM-HMM systems have to be firstly trained to
generate the transcriptions of each level’s phonetic units and this
would cost too much time. In this paper, we also propose a fast
and efficient senone tying method based on DNN derived senone
embeddings to generate phonetic units of different granularity.

The DNN can actually be seen as a joint model combing feature
learning and a log-linear classifier. The raw acoustic feature is firstly
converted into a highly discriminative feature representation through
the many hidden layers of nonlinear transforms. Then a log-linear
model (output layer) is used to generate the classification results
based on the feature from the last hidden layer.

Let’s denote the weight matrix and the bias of the output layer
as WH×S and bS , where H denotes the number of hidden units in
the last hidden layer and S denotes the number of output senones.
Each senone corresponds to a specific column of WH×S and an
element of bS . They are concatenated to form a vector called senone
embedding in this paper. Actually, if two senones have similar
posteriors given the same features, the senone embeddings would
be similar as well. So it’s reasonable to use senone embeddings
to measure the similarity of different senones. The senones are
clustered in a bottom-up way based on the Euclidean distance
measure where two senones with the minimum distance are put
together in each iteration. And the average of the senone embeddings
that have been grouped to the same cluster is used to represent the
new senone for next iteration. After the clustering, the summation
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of the outputs’ values in the same cluster are regarded as the
posterior probability of the new phonetic unit for sufficient statistics
extraction.

We try to verify the effectiveness of the proposed methods
by visualizing monophone states based embeddings where each
monophone is modeled with three states. The phone set is from
CMU dictionary [20] and contains 39 phones. The visualization
is based on the t-Distributed Stochastic Neighbor Embedding (t-
SNE) toolkit [21] which uses t-SNE model for dimensionality
reduction and is particularly well suited for the visualization of
high-dimensional datasets. All the embeddings are reduced to two-
dimensional vectors based on t-SNE toolkit and are plotted in Figure
1. We can see that embeddings belong the the same phone are very
close to each other.

5. EXPERIMENTS

5.1. Experimental setup

5.1.1. Dataset

Experiments are carried out on three types of speaker verification
tasks of NIST SRE 2008 female telephone data, which are English
long utterance (short2-short3 condition7), multilingual long utter-
ance (short2-short3 condition6), English short utterance (short2-
10sec, 10sec-10sec). The duration of long (short2, short3) and
short (10sec) utterances are approximately 2.5 minute and 10 second
respectively. The training data for phonetically-related DNNs are
300 hours English telephone speeches from Switchboard-I. The
training data for UBM, i-vector T matrix and PLDA are selected
from NIST SRE 04, 05, 06 telephone data.

5.1.2. Models

• GMM-HMM: A GMM-HMM system based on HTK toolkit [22]
is firstly trained to generate the transcriptions of each level’s pho-
netic unit. The CMU dictionary is used which contains 39 phones
[20]. 52-dimensional PLP features (13 basic + first/second/third
order) are used with speaker-based mean-covariance normaliza-
tion. Then the features are reduced to 39 dimension by HLDA.
The transcriptions of monophone, monophone state based systems
are generated from a monophone GMM-HMM model, while the
transcriptions of tied-triphone state based system are generated
from a triphone GMM-HMM model. The number of tied-triphone
states is decided by a phonetic decision tree.

• DNN: All the DNNs used in this paper have five hidden layers
and are fine-tuned with cross-entropy criterion based on the
transcriptions generated by GMM-HMM systems. The input of
the DNN is a concatenation of 11 frames and each frame consists
of 120 log Mel-filterbank coefficients (40 basic + first/second
order). Each hidden layer has 1200 nodes. The number of output’s
nodes are either 2227, or 1038, or 521, or 117 for tied-triphone
state, 117 (39 phones × 3 states) for monophone state, 39 (39
phones) for monophone.

• UBM/i-vector model: The acoustic feature adopted is 39-
dimensional (13 basic + first/second order) PLP feature. Then
a gender-dependent diagonal covariance UBM with 2048
mixtures is trained. The dimensionality of i-vectors is 400.
Simplified Gaussian PLDA [7] is used to generate scores and the
dimensionality of speaker subspace in PLDA model is 200.

• DNN/i-vector model: The DNN is used to provide frame poste-
riors. Then they are combined with 39-dimensional PLP features

for sufficient statistics extraction. The total number of mixtures
is confined by the number of phonetic units times the number of
mixtures per phonetic unit. Other model configurations are the
same with the UBM/i-vector model.

Equal error rate (EER) and minimum decision cost function (minD-
CF) are adopted for evaluation [23].

5.2. Experimental results

5.2.1. Speaker modeling at different levels of phonetic granularity

Experimental results of the baseline 2048 Gaussians UBM/i-vector
system and the 2227 senones DNN/i-vector system are presented
in the first two rows of Table 1. Results show that DNN/i-vector
outperforms UBM/i-vector on short2-short3 condition7 (English
long utterance) task. However, the performance of DNN/i-vector
degrades sharply compared to the UBM/i-vector on short2-short3
condition6 (Multilingual long utterance) task. Actually more than
ten different languages are involved in this task. DNNs trained with
English phonetic units only can hardly describe the pronunciation
patterns of so many languages. Besides, the tied-triphone state is
a very precise phonetic unit and highly language-dependent which
makes it even less suitable for multilingual task. It is interesting
to see that DNN/i-vector is inferior to UBM/i-vector on short2-
10sec and 10sec-10sec (English short utterance) tasks. We think
phonetic content mismatch might be a reasonable explanation for
the performance degradation. Since we are dealing with text-
independent short utterance task, the frames of enrollment and test
utterances are more likely to be aligned to different senones using
discriminatively trained DNN and the comparison between them will
be less effective. However, the problem might not be so severe in
UBM based system where the generatively trained model usually
has more blurred boundaries between different phonetic units.

The results of DNN/i-vector at different levels of phonetic
granularity are presented in Table 1 as well. The number of
Gaussians of the systems are all around 2000.

On short2-short3 condition7 (English long utterance) task, it
can be seen that the best result is obtained with 521 senones based
DNN/i-vector system, and the relative improvements are 17.7% in
EER and 20.2% in minDCF compared with 2227 senones based
approach. The performance becomes worse when the number of
senones is further reduced. 117 is the minimum senone number we
could obtained based on the HTK toolkit [22] and from the results we
can see that the performance of 117 senones based system is similar
to 117 monophone states based system since the triphone states that
belong to the same phone are already clustered to the same senone.
The 39 monophones based system performs slightly worse than 117
monophone states based approach. However, it still outperforms
the 2227 senones based system. The above results actually indicate
that the frame alignment process does not need to be so accurate on
content. A balance of phonetic and acoustic precision brings more
benefits to speaker verification.

On short2-short3 condition6 (multilingual long utterance) task,
results show that consistent performance improvements could be
obtained when we reduce the number of phonetic units. Compared
with 2227 senones based system, the relative improvements of
39 monophones based approach are 23.8% in EER and 17.6%
in minDCF. As the number of phonetic units becomes less, the
phonetic unit becomes more general which makes it more suitable
for multilingual tasks. It should be noticed the improvements are
not so obvious compared with UBM based system since the DNN
is still trained with English data only which makes the phonetic
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Table 1. Performance (EER(%)/minDCF08×10) of UBM/i-vector and DNN/i-vector at different levels of phonetic granularity on the NIST
SRE08 female short2-short3 condition7, short2-short3 condition6, short2-10sec, 10sec-10sec tasks. (G denotes Gaussian)

acoustic model model size short2-short3 short2-short3 short2-10sec 10sec-10seccondition7 condition6
UBM 2048×1G 2.02/0.106 5.08/0.268 10.33/0.497 16.60/0.752

tied-triphone state 2227×1G 1.81/0.089 6.64/0.323 11.11/0.574 17.85/0.826

tied-triphone state
1038×2G 1.67/0.078 6.28/0.304 10.78/0.557 17.52/0.808
521×4G 1.49/0.071 5.65/0.286 10.14/0.542 16.71/0.801

117×16G 1.56/0.080 5.26/0.269 9.75/0.508 16.11/0.748
monophone state 117×16G 1.58/0.081 5.11/0.271 9.72/0.495 16.12/0.742

monophone 39×48G 1.65/0.082 5.06/0.266 9.66/0.472 15.87/0.735

Table 2. Performance (EER(%)/minDCF08×10) of UBM/i-vector and DNN/i-vector with DNN’s senone outputs tying on the NIST SRE08
female short2-short3 condition7, short2-short3 condition6, short2-10sec, 10sec-10sec tasks. (G denotes Gaussian)

acoustic model model size short2-short3 short2-short3 short2-10sec 10sec-10seccondition7 condition6
UBM 2048×1G 2.02/0.106 5.08/0.268 10.33/0.497 16.60/0.752

tied-triphone state-2227

2227×1G 1.81/0.089 6.64/0.323 11.11/0.574 17.85/0.826
1038×2G 1.72/0.088 6.43/0.326 10.95/0.575 17.63/0.821
521×4G 1.54/0.076 5.74/0.294 10.21/0.562 16.61/0.796

117×16G 1.62/0.082 5.35/0.278 9.81/0.513 16.23/0.764
39×48G 1.65/0.084 5.19/0.275 9.70/0.481 15.95/0.741

tied-triphone state-8223
2227×1G 1.83/0.091 6.68/0.330 11.12/0.577 17.88/0.822
521×4G 1.56/0.078 5.77/0.299 10.18/0.568 16.62/0.792
39×48G 1.68/0.085 5.21/0.282 9.75/0.485 16.01/0.743

units are language dependent. UBM trained without phoneme-
specific tuning might still be an ideal option for different languages
since it has a more blurred clustering which might somehow benefit
multilingual tasks. We will further investigate using DNNs trained
with multilingual data in our later work.

Results on short2-10sec and 10sec-10sec (English short utter-
ance) show that systems’ performance could be improved when we
reduce the number of phonetic units. Compared with 2227 senones
based system, the relative improvements are 13.1% in EER and
17.8% in minDCF on short2-10sec task, 11.1% EER and 11.0% in
minDCF on 10sec-10sec with 39 monophones based system. When
we reduce the number of phonetic units, the frames of enrollment
and test utterances have greater chance to be aligned to the same
phonetic units first and the further frame alignments based on GMMs
might be more balanced which leads to less severe phonetic content
mismatch problem. This might be the reason that the performance
becomes better when the phonetic unit is not so precise.

5.2.2. Speaker modeling based on unsupervised senone tying

The results of DNN/i-vector systems based on unsupervised senone
tying are presented in Table 2. We first conduct the experiments on
DNN with 2227 senones. From the results in Table 2 we can see
that competitive results could be obtained compared with supervised
decision tree based senone tying which demonstrate the effectiveness
of the proposed senone tying method.

In fact, the DNN model used in speaker verification is trained
based on the same criteria as in speech recognition. However, the
senone number is usually much larger (around 8000 or 9000) for
speech recognition and we have to train a DNN with less senones

for speaker verification separately. As a result, we’ll have to go
through the DNN forward process twice if we want to do speech
recognition and speaker verification tasks at the same time. So
we also experiment the senone tying method on DNN with 8223
senones to see if it is feasible for speaker verification using DNN
with larger senones. From the results in Table 2 we can see the
method is effective and similar performance could be obtained.
These results indicate that it is practical to use the same DNN for
speech recognition and speaker verification while maintaining good
performance for both tasks.

6. CONCLUSIONS

In this paper we assess the DNN/i-vector approach for speaker
verification by using DNNs with phonetic units of different gran-
ularity. Experimental results show that a balance of phonetic and
acoustic precision brings more benefits to speaker verification and
generalize better in the presence of phonetic mismatch. In addition,
the proposed senone tying method based on senone embeddings
is effective for speaker verification and it demonstrates that it is
practical to use DNNs with larger number of senones for speaker
verification when senone tying is used. In the future, we’ll further
investigate using multilingual DNNs for speaker modeling.
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